Code Gala ist ein Projekt der ubuntuusers.de-Mitglieder. Programmierer erstellen zu verschiedenen Aufgaben ihre Lösungen in ihren Lieblingssprachen.
Aufgabenstellung: Alle vermutlichen Lychrel Zahlen zwischen 1 und 100000 ausgeben. Für jede Zahl sollen mindestens 100 Iterationen ausgeführt werden.
von Mr. Kanister (sehr langsam & nur Zahlen < 1000)
1 2 3 4 5 6 7 8 9 10 11 | #!/bin/bash for (( i = 1; i <= 1000; i++ )) do zahl=$i for (( j = 1; j <= 100; j++ )) do zahl=$(echo "$zahl + $(echo $zahl | rev)" | bc) [[ "$zahl" == "$(echo $zahl | rev)" ]] && break (( j == 100 )) && echo $i done done |
von rocco_storm (sehr langsam & nur Zahlen < 1000)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | #!/bin/bash i=1 last=1000 iterations=100 x=0 isPalindrom () { if [[ "$x" == "$(echo $x | rev)" ]] then return 0 else return 1 fi } isLychrel () { j=0 x=$i while [ "$j" -lt "$iterations" ] do x=$(echo "$x + $(echo $x | rev)" | bc) if isPalindrom then return 1 fi (( j += 1 )) done return 0 } while [ "$i" -lt "$last" ] do if isLychrel then echo "-------------> Found Lychrel: $i" fi (( i += 1 )) done echo exit 0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | #include <stdio.h> #include <string.h> #define FROM 1 #define TO 100000 #define TO_DIGITS 10 #define ITERATIONS 100 #define MAX_DIGITS (TO_DIGITS + ITERATIONS) static unsigned int n_length, length; static char n[TO_DIGITS], a[MAX_DIGITS], b[MAX_DIGITS]; static void reverse_add(void) { unsigned int i, carry, tmp; for (i = 0, carry = 0; i < length; i++) { tmp = a[i] + a[length - 1 - i] + carry; if (tmp >= 10) { tmp = tmp - 10; carry = 1; } else { carry = 0; } b[i] = tmp; } if (carry) { b[i] = carry; length++; } } static int is_palindrome(void) { char *x, *y; x = b; y = b + length - 1; while (x < y) { if (*x++ != *y--) return 0; } return 1; } static int is_lychrel() { unsigned int i; memcpy(a, n, n_length); length = n_length; for (i = 0; i < ITERATIONS; i++) { reverse_add(); if (is_palindrome()) return 0; memcpy(a, b, length); } return 1; } static void print_n(void) { int i; for (i = n_length - 1; i >= 0; i--) { printf("%c", n[i] + '0'); } printf("\n"); } static void increase_n(void) { char *x = n; while ((*x)++ == 9) { *x++ = 0; } if (x - n == n_length) n_length++; } int main(void) { unsigned int i; n_length = sprintf(a, "%d", FROM); for (i = 0; i < n_length; i++) { n[i] = a[n_length - 1 - i] - '0'; } for (i = FROM; i <= TO; i ++) { if (is_lychrel()) { print_n(); } increase_n(); } return 0; } |
von Hello World (Benötigt libgmpxx4ldbl und den Compilerswitch -lgmpxx)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include <gmpxx.h> #include <sstream> #include <iostream> #include <algorithm> using namespace std; bool is_palindrome(const mpz_class& x) { stringstream ss; ss << x; string s = ss.str(); int i1 = s.length()-1, i2=0; while (i1 >= i2) { if (s[i1] != s[i2]) return false; i1--; i2++; } return true; } mpz_class reverse(const mpz_class& x) { stringstream ss; mpz_class rv; ss << x; string s = ss.str(); reverse(s.begin(),s.end()); ss.str(s); ss >> rv; return rv; } bool is_lychrel(const mpz_class& x, int iterations) { mpz_class y = x; for (int i=0;i<iterations;++i) { y+=reverse(y); if (is_palindrome(y)) return false; } return true; } int main() { cout.sync_with_stdio(false); for (int i=0;i<100000;++i) { if (is_lychrel(i,100)) cout << i << '\n'; } } |
von Mr. Kanister (nur 20 Iterationen)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | #include <iostream> #include <sstream> using namespace std; unsigned long long int revers(unsigned long long int zahl); bool is_palin(unsigned long long int zahl); int main(int argc, char** argv) { unsigned long long int zahl; for (int i = 1; i <= 100000; i++) { zahl = i; for (int j = 1; j <= 20; j++) { zahl += revers(zahl); if (is_palin(zahl)) { break; } if (j == 20) { cout << i << " könnte eine Lychrel-Zahl sein\n"; } } } return EXIT_SUCCESS; } unsigned long long int revers(unsigned long long int zahl) { stringstream buf; while (zahl != 0) { buf << zahl % 10; zahl /= 10; } buf >> zahl; return zahl; } bool is_palin(unsigned long long int zahl) { if (zahl == revers(zahl)) { return true; } else { return false; } } |
von Tux90 (nur 20 Iterationen)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | #include <iostream> #include <sstream> using namespace std; /* Gibt alle Lychrel-Zahlen zwischen 11 und 100000 aus */ unsigned long long reverse( unsigned long long zahl) //Dreht die Zahl um { stringstream stream, s; string asstring, reverse; unsigned long long rev = 0; stream << zahl; stream >> asstring; stream.flush(); for( int i = (asstring.length()-1); i >= 0 ; i-- ) { s << asstring.at(i); } s >> rev; return rev; } bool is_palin( unsigned long long zahl ) //Überprüft, ob zahl ein Palindrom ist { if( reverse(zahl) == zahl ) return true; return false; } int main() { bool is_lychrel = true; unsigned long long zahl = 0; for( int z = 11; z <= 100000; z++ ) { is_lychrel = true; zahl = z; for( int i = 0; i <= 20; i++ ) { zahl = zahl + reverse(zahl); if( is_palin(zahl) ) { is_lychrel = false; break; } } if( is_lychrel ) cout << z << " könnte eine Lychrel-Zahl sein!" << endl; } return 0; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | import std.stdio; import std.string; static const uint ITERATIONS = 100; class Integer { ubyte[] digits; invariant { foreach (ubyte d; digits) { assert(0 <= d && d < 10); } } this(uint n) out { assert(this.toInt == n); } body { char[] d = std.string.toString(n); this.digits = new ubyte[d.length]; foreach (uint i, char c; d) { this.digits[$-1-i] = c - '0'; } } this(Integer i) out { assert(this.digits !is i.digits); } body { this.digits = new ubyte[i.length]; this.digits[] = i.digits; } Integer opAdd(Integer other) { auto result = new Integer(this); uint carry = 0; foreach (uint i, inout ubyte b; result.digits) { b = b + other.digits[i] + carry; if (b >= 10) { b -= 10; carry = 1; } else { carry = 0; } } if (carry) { result.digits.length = result.digits.length + 1; result.digits[$-1] = carry; } return result; } uint length() { return this.digits.length; } bool isPalindrome() { for (uint i = 0; i < this.length / 2; i++) { if (this.digits[i] != this.digits[$-1-i]) return false; } return true; } Integer reversed() { auto result = new Integer(this); for (uint i = 0; i < result.length / 2; i++) { auto tmp = result.digits[i]; result.digits[i] = result.digits[$-1-i]; result.digits[$-1-i] = tmp; } return result; } char[] toString() { auto result = new char[this.length]; foreach (uint i, ubyte b; this.digits) { result[i] = this.digits[$-1-i] + '0'; } return result; } uint toInt() { uint result = 0; foreach_reverse (ubyte b; this.digits) { result = result * 10 + b; } return result; } } bool isLychrel(Integer n, uint iterations = ITERATIONS) { for (uint i = 0; i < iterations; i++) { n = n + n.reversed; if (n.isPalindrome) return false; } return true; } void main() { for (uint n = 1; n <= 100_000; n++) { auto i = new Integer(n); if (isLychrel(i)) writef("%s\n", i); } } |
von radoe2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | -module(lychrel). -export( [is_palindrom/1, inversion/1, lychrel/3, start/0]). %-- is_palindrom is_palindrom(AnInteger) -> L = integer_to_list(AnInteger), R = lists:reverse(L), ZipWithFun = fun( E1, E2 ) -> E1 == E2 end, Zipped = lists:zipwith(ZipWithFun, L, R), %% lists:any here returns true if L is *not* a palindrom, so negate it. false == lists:any( fun(X) -> X == false end, Zipped); %-- inversion inversion(AnInteger) -> list_to_integer (lists:reverse( integer_to_list(AnInteger))). %-- find_lychrel find_lychrel(OriginalStart, Current, 0) -> case is_palindrom(Current) of true -> ok; false -> io:format("~w~n", [OriginalStart]) end; find_lychrel(OriginalStart, Current, CurrentIter) -> case is_palindrom(Current) of true -> ok; false -> find_lychrel(OriginalStart, Current + inversion(Current), CurrentIter -1 ) end. %-- lychrel lychrel(End,End,_) -> ok; lychrel(Start,End,MaxIter) -> find_lychrel(Start, Start, MaxIter), lychrel(Start+1, End, MaxIter). %for convenience, assume Start=1,End=N,MaxIter=100 lychrel(N) -> lychrel(1,N,100). %-- for calling this as "erl -noshell -s lychrel start" start() -> lychrel(100000), init:stop(). |
von GerritK (nur 25 Iterationen)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | program Lychrel_Zahl implicit none integer, parameter :: lang = selected_int_kind(16) integer(kind=lang) :: z1, z2 integer :: i, z, n=0 do z=100000,0,-1 z1 = z do i=0,25 call reverse(z1, z2) z1 = z1 + z2 call reverse(z1, z2) if (z1 == z2) exit if (i == 25) print*, z enddo enddo end program subroutine reverse(z1, z2) implicit none integer, parameter :: lang = selected_int_kind(16) integer(kind=lang), intent(in) :: z1 integer(kind=lang), intent(out) :: z2 integer(kind=lang) :: zahl integer :: hilf z2 = 0 zahl = z1 do hilf = modulo(zahl,10) zahl = (zahl-hilf)/10 z2 = 10 * z2 + hilf if (zahl == 0) exit enddo return end subroutine |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import Char (digitToInt) type Digits = [Int] intToDigits :: Int -> Digits intToDigits = reverse . map digitToInt . show add :: Digits -> Digits -> Digits add xs ys = add' xs ys 0 where add' [] [] 0 = [] add' [] [] 1 = [1] add' (a:as) (b:bs) c = let s = a + b + c in (s `mod` 10) : add' as bs (s `div` 10) reverseAndAdd :: Digits -> Digits reverseAndAdd ds = add ds (reverse ds) isPalindrome :: Digits -> Bool isPalindrome ds = ds == (reverse ds) isLychrel :: Int -> Int -> Bool isLychrel i n = not . any isPalindrome . take i . tail $ iterate reverseAndAdd (intToDigits n) lychrelNumbers :: Int -> Int -> Int -> [Int] lychrelNumbers a b m = filter (isLychrel m) [a..b] main :: IO () main = mapM_ print $ lychrelNumbers 1 100000 100 |
von rocco_storm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | module Main where {- Integer - die zu testende Zahl Bool - True wenn es ein Palindrom ist -} isPalindrom :: Integer -> Bool isPalindrom x = show x == reverse (show x) {- Integer(1) - die zu testende Zahl Integer(2) - Anzahl der Iterationen Bool - True wenn es eine Lychrel-Zahl ist -} isLychrel :: Integer -> Integer -> Bool isLychrel x y | isPalindrom x = False | not (isPalindrom x) && y > 0 = isLychrel (x+(read(reverse(show x))::Integer)) (y-1) | not (isPalindrom x) && y <= 0 = True {- Integer(1) - Letzte zu testende Zahl Integer(2) - Aktuell zu testende Zahl Integer(3) - Anzahl der Iterationen Pro Zahl [Integer] - Liste der Lychrel-Zahlen -} lychrelTest :: Integer -> Integer -> Integer -> [Integer] -> [Integer] lychrelTest x y z xs | y>x = xs | y<=x && isLychrel y z = lychrelTest x (y+1) z xs++[y] | y<=x && not (isLychrel y z) = lychrelTest x (y+1) z xs lychrelTest x y z [] | y>x = [] | y<=x && isLychrel y z = lychrelTest x (y+1) z [y] | y<=x && not (isLychrel y z) = lychrelTest x (y+1) z [] {- Integer(1) - Zu testende Zahlen Integer(2) - Iterationen pro Zahl [Integer] - Liste der Lychrel-Zahlen -} main :: Integer -> Integer -> [Integer] main x y = lychrelTest x 1 y [] |
von kart0ffelsack
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | import java.math.BigInteger; public class Lychrel { public static boolean isPalindrom(BigInteger x) { return spiegel(x).equals(x); } static BigInteger spiegel(BigInteger x) { String cl = x.toString(); String neu = new StringBuffer(cl).reverse().toString(); return new BigInteger(neu); } static boolean lychrel(int x) { BigInteger a = BigInteger.valueOf(x); for(int i = 0;i < 100;i++) { if(isPalindrom(a=a.add(spiegel(a)))) return false; //System.out.println(a.toString()); } return true; } public static void main(String[] args) { int erg = 0; long start = System.currentTimeMillis(); for(int i = 1;i <= 100000;i++) { if(lychrel(i)) { System.out.println(i); erg++; } } long stop = System.currentTimeMillis(); System.out.println("Anzahl: " + erg); System.out.println("Zeit: " + (stop - start) + "ms"); } } |
von rocco_storm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import java.math.BigInteger; public class lychrel3 { public static void main(String[] args) { int anz = 0; int last = 100000; int iter = 100; long start = System.currentTimeMillis(); for(int i = 1;i <= last;i++) { BigInteger z = BigInteger.valueOf(i); for (int j=1;j<=iter;j++) { z=z.add(new BigInteger(new StringBuffer(z.toString()).reverse().toString())); if(new BigInteger(new StringBuffer(z.toString()).reverse().toString()).equals(z)) break; if (j==iter) { System.out.println(i); anz++; } } } long stop = System.currentTimeMillis(); System.out.println("anz: " + anz); System.out.println("time: " + (stop - start) + "ms"); } } |
von fnumatic
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | public class LychrelTest { public static void main(String[] args) { new LychrelTest().run(); } public void run() { int count = 0; long start = System.currentTimeMillis(); for (int i = 1; i < 100000; i++) { if (checkLychrel( i )) { count++; System.out.println( "prob lychrel = " + i ); } } long stop = System.currentTimeMillis(); System.out.println( "count: " + count ); System.out.println( "time: " + ( stop - start ) + "ms" ); } public boolean checkLychrel(int i) { LargeInt largeInt = new LargeInt( i ); for (int j = 1; j <= 100; j++) { largeInt = largeInt.add( largeInt.reverse() ); if (largeInt.isPalindrom()) return false; } return true; } final class LargeInt { List<Integer> digits; public LargeInt(List<Integer> list) { digits = list; } public LargeInt(int value) { digits = new ArrayList<Integer>(); while (value != 0) { digits.add( value % 10 ); value /= 10; } } public LargeInt add(LargeInt addend) { Iterator<Integer> addendIterator = addend.digits.iterator(); List<Integer> result = new ArrayList<Integer>( digits.size() ); int carry = 0; for (int digit : digits) { int sum = digit + addendIterator.next() + carry; result.add( sum % 10 ); carry = sum / 10; } if (carry != 0) result.add( carry ); return new LargeInt( result ); } public LargeInt reverse() { List<Integer> result = new ArrayList<Integer>( digits ); Collections.reverse( result ); return new LargeInt( result ); } public boolean isPalindrom() { LinkedList<Integer> list = new LinkedList<Integer>( digits ); while (list.size() > 1) { if (!list.removeFirst().equals(list.removeLast())) { return false; } } return true; } } } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #!/usr/bin/env python def is_palindrome(number): number_as_string = str(number) return number_as_string == number_as_string[::-1] def is_lychrel(number, iterations): for dummy in xrange(iterations): number += int(str(number)[::-1]) if is_palindrome(number): return False return True def main(): first = 1 last = 100000 iterations = 100 for number in xrange(first, last + 1): if is_lychrel(number, 100): print number if __name__ == '__main__': main() |
von audax
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | from itertools import ifilter, imap def mirror(n): return int( str(n)[::-1]) def is_lychrel(n, tries=100): rev = mirror(n) for dummy in xrange(tries): n += rev rev = mirror(n) if n == rev: return False return True def main(): print '\n'.join(imap(str, ifilter(is_lychrel, xrange(100000)))) if __name__ == '__main__': main() |
von BadBoy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | def reverse zahl zahl.to_s.reverse.to_i end def is_lychrel n, tries=100 rev = reverse n 1.upto(tries) { n += rev rev = reverse n return false if n == rev } true end 1.upto(ARGV[0] ? ARGV[0].to_i : 100000) { |i| print i, " könnte eine Lychrel-Zahl sein\n" if is_lychrel i } |
von Adna rim
1 2 3 4 5 6 7 8 9 10 11 12 | #!/usr/bin/env ruby $VERBOSE=true 0.upto(100000) do |i| lychrel=i palin=false 100.times do i += i.to_s.reverse.to_i (i.to_s == i.to_s.reverse) && (palin=true;break) end !palin && puts(lychrel) end |
von user unknown
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | object Lychrel { def isPalindrom (x: BigInt): Boolean = spiegel (x).equals (x) def spiegel (x: BigInt): BigInt = { var sb = new StringBuffer (x.toString ()) BigInt (sb.reverse ().toString ()) } def lychrel (x: BigInt, sofar: Int = 0): Boolean = { if (sofar >= 100) true else { val a = x + spiegel (x) if (isPalindrom (a)) false else lychrel (a, sofar + 1) } } def main (args: Array [String]) = for (i <- (1 to 100000)) { if (lychrel (i)) println (i) } } |
von kart0ffelsack
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | fun revhelp x = IntInf.fromString(implode(rev(explode(IntInf.toString(x))))); fun revhelp2(SOME(x)) = x; fun revInt x = revhelp2(revhelp(x)); fun isPalindrom x = revInt(x) = x; fun isLychrel (x,0) = true | isLychrel (x,y) = let val erg = x + revInt(x) in not isPalindrom(erg) && isLychrel(erg,y-1) end; fun test 0 = [] | test x = if isLychrel(x,100) then x::test(x-1) else test(x-1); test 100000; |
Aufgabenstellung: Die Fibonacci-Folge mit f1=1 und f2=1 (alternativ auch mit f1=0 und f2=1) für die ersten 100 Fibonacci-Zahlen zu bestimmen und daraus für alle Fibonacci-Zahlen den Näherungswert an den Goldener Schnitt bestimmen.
Forumlink: http://forum.ubuntuusers.de/topic/155538/
von kart0ffelsack
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | add $a1 $zero 0x00000001 add $t2 $zero 0x00000028 add $t3 $zero 0x00000002 add $s0 $zero 0x10010000 add $s1 $zero 0x10010020 sw $a0 0($s0) sw $a1 0($s1) add $s2 $zero 0x10010040 A: beq $t3 $t2 B lw $a0 0($s0) lw $a1 0($s1) add $a3 $a0 $a1 sw $a1 0($s0) sw $a3 0($s1) sw $a3 0($s2) add $s2 $s2 0x00000020 add $t3 $t3 0x00000001 j A B: add $a0 $zero 0x00000002 div $t2 $t2 $a0 add $s3 $s2 0x00000020 C: beq $t3 $t2 D l.s $f0 0($s2) sub $s2 $s2 0x00000020 l.s $f1 ($s2) sub $s2 $s2 0x00000020 div.s $f3 $f0 $f1 s.s $f0 ($s3) add $s3 $s3 0x00000020 sub $t3 $t3 0x00000001 j C D: |
von user unknown
1 | l=1;r=1; for s in $(seq 1 50); do l=$((l+r)); r=$((r+l)); echo -e $s"\t"$l"\t"$r"\t" $(echo "scale=16; $r/$l" | bc); done |
von user unknown
1 | echo "scale=16;r=0;l=1;while (i++<100) {r+=l;l+=r;r;l;l/r;}" | bc |
von user unknown
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | #/bin/bc # # fibonacci und Goldener Schnitt # scale=16 i=0 r=0 l=1 r r/l while (i++<100) { r+=l print i, "\t", r, "\t", r/l, "\t" l+=r print l, "\t", l/r, "\n" } print "\n\n" |
von audax
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | int main( void ) { double n = 1; double m = 1; double tmp; int i; for(i=0; i<100;i++) { printf("%d\t%.f\t%f\n", i, n, (n/m)); tmp = n; n = m; m = tmp + m; } return 0; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #include <stdio.h> #include <gmp.h> int main(void) { int i; mpf_t a, b, tmp, golden_ratio; mpf_set_default_prec(200); mpf_init(a); mpf_init_set_ui(b, 1); mpf_init(tmp); mpf_init(golden_ratio); for (i = 0; i <= 100; i++) { mpf_set(tmp, b); mpf_add(b, b, a); mpf_set(a, tmp); mpf_div(golden_ratio, b, a); gmp_printf("%3d. %21.0Ff %.50Ff\n", i, a, golden_ratio); } mpf_clear(a); mpf_clear(b); mpf_clear(tmp); mpf_clear(golden_ratio); return 0; } |
von Hello World
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #include <iostream> #include <vector> #include <gmpxx.h> using namespace std; int main() { vector<mpz_class> v(100); v[0]=v[1]=1; cout << 1 << endl << 1 << endl; for(char i=2;i<100;++i) { v[i]=v[i-1]+v[i-2]; cout << v[i] << endl; } for(char i=1;i<100;++i) { cout << mpq_class(v[i],v[i-1]).get_d() << endl; } } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | #include <iostream> typedef unsigned long long u64; template<u64 x1, u64 x2, u64 y1, u64 y2> struct add { const static u64 result2 = (x2+y2) & (~(1ULL<<63)); const static u64 result1 = ((x2+y2) & (1ULL<<63) ? 1 : 0) + x1+y1; }; template<short i> struct fibo { const static u64 result2 = add<fibo<i-1>::result1,fibo<i-1>::result2,fibo<i-2>::result1,fibo<i-2>::result2>::result2; const static u64 result1 = add<fibo<i-1>::result1,fibo<i-1>::result2,fibo<i-2>::result1,fibo<i-2>::result2>::result1; }; template<> struct fibo<0> { const static u64 result2 = 0; const static u64 result1 = 0; }; template<> struct fibo<1> { const static u64 result2 = 1; const static u64 result1 = 0; }; template<short i> struct fibo_printer { static void print() { std::cout << "Die " << i << ". Fibonacci-Zahl lautet: " << fibo<i>::result1 << " * 2^63 + " << fibo<i>::result2 << std::endl; fibo_printer<i+1>::print(); } }; template<> struct fibo_printer<101> { static void print() { return; } }; int main() { fibo_printer<0>::print(); } |
1 2 3 4 5 6 7 8 9 10 11 12 | import std.stdio; void main() { real a, b, tmp; a = b = 1; for (uint i = 0; i <= 100; i++) { writef("%3d. %21.0f %.50f\n", i, a, b / a); tmp = b; b += a; a = tmp; } } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import std.stdio; static const ulong MAX = 10000000000000000000_UL; template add(ulong lo1, ulong hi1, ulong lo2, ulong hi2) { const ulong low = lo1 + lo2 % MAX; const ulong high = hi1 + hi2 + (lo1 + lo2 >= MAX ? 1 : 0); } template F(uint n) { static if (n == 0) { const ulong low = 0; const ulong high = 0; } else static if (n == 1) { const ulong low = 1; const ulong high = 0; } else { alias F!(n - 1) F_1; alias F!(n - 2) F_2; mixin add!(F_1.low, F_1.high, F_2.low, F_2.high); } } template Fib(uint n, uint i = 0) { static if (i <= n) { void print() { alias F!(i) F_i; static if (F_i.high == 0) { writef("%3d. %d\n", i, F_i.low); } else { writef("%3d. %d%020d\n", i, F_i.high, F_i.low); } Fib!(n, i + 1).print(); } } else { void print() {} } } void main() { Fib!(100).print(); } |
von radoe2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | -module(fib2). -export([fib/1,start/1]). fib(N) -> fib(1,1,N). fib(F1,_,1) -> io:format("~w~n", [F1]); fib(F1,F2,N) -> FN = F1+F2, fib(F2,FN,N-1). %%% start([H|_]) -> N= list_to_integer(atom_to_list(H)), io:format("fib(~w)=~n", [N]), fib(N), init:stop(). |
von GerritK
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | program fibo implicit none double precision, dimension(0:99) :: f = 0, g = 0 integer :: n = 0 f(0) = 0 f(1) = 1 do n=0,99 f(n) = 1.0/sqrt(5.0) * ( ((1.0+sqrt(5.0))/2.0)**n - ((1.0-sqrt(5.0))/2.0)**n ) enddo do n=0,98 if (f(n) == 0) then g(n) = 0.0 else g(n) = f(n+1)/f(n) endif enddo print'(I3,2X,F30.1,2X,F10.8)', (n+1, f(n), g(n), n=0,99) end program |
1 2 3 4 | fibonacci = fib 1 1 where fib a b = a : fib b (a+b) f a b = show a ++ " " ++ show (fromIntegral b / fromIntegral a) main = mapM_ putStrLn $ take 100 $ zipWith f fibonacci (tail fibonacci) |
von Morningrise
1 2 3 | module Main where fib = 0 : 1 : zipWith (+) fib (tail fib) main = print [ ([fp,f], f/fp) | n <- [2..101], let fp = fib !! (n-1), let f = fib !! n] |
von Greebo
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import java.math.*; public class Fib2 { public static void main(String[] args) { if (args.length != 2) System.exit(-1); try { int max = Integer.parseInt(args[0]); int precission = Integer.parseInt(args[1]); int mlen = Integer.toString(max - 1).length(); int flen = fibIter(max).toString().length(); BigDecimal n1 = BigDecimal.ZERO; BigDecimal n2 = BigDecimal.ZERO; for (int i = 1; i < max; ++i) { n1 = n2; n2 = fibIter(i); String ratio = n1.intValue() == 0 ? "infinity" : n2.divide(n1, precission, RoundingMode.HALF_UP).toString(); System.out.format("f(%" + mlen + "d) = %" + flen + "s, f(%" + mlen + "d)/f(%" + mlen + "d) ~= %s%n", i, n2, i, i - 1, ratio); } } catch (NumberFormatException e) { System.err.format("Invalid command line parameter: %s or %s", args[0], args[1]); System.exit(-1); } catch (IllegalArgumentException e) { System.err.format("Invalid command line parameter: %s or %s", args[0], args[1]); System.exit(-1); } } public static BigDecimal fibIter(int i) { if (i < 0) throw new IllegalArgumentException(); if (i < 2) return new BigDecimal(Integer.toString(i)); BigDecimal a = BigDecimal.ZERO; BigDecimal b = BigDecimal.ONE; BigDecimal c = a.add(b); for (; i > 2; --i) { a = b; b = c; c = a.add(b); } return c; } } |
von kart0ffelsack
Ook. Ook? Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook? Ook. Ook. Ook. Ook? Ook. Ook. Ook! Ook? Ook! Ook? Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook! Ook? Ook. Ook? Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook? Ook. Ook! Ook! Ook? Ook! Ook. Ook? Ook! Ook. Ook? Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook. Ook! Ook? Ook. Ook? Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook! Ook? Ook. Ook! Ook! Ook? Ook! Ook. Ook. Ook? Ook. Ook? Ook. Ook? Ook. Ook? Ook! Ook. Ook? Ook! Ook. Ook. Ook? Ook. Ook? Ook! Ook? Ook! Ook? Ook! Ook! Ook? Ook! Ook? Ook. Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook? Ook! Ook. Ook? Ook. Ook? Ook! Ook? Ook? Ook. Ook? Ook. Ook. Ook. Ook. Ook? Ook. Ook. Ook. Ook? Ook! Ook! Ook? Ook! Ook? Ook. Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook! Ook? Ook! Ook! Ook? Ook! Ook. Ook? Ook. Ook. Ook. Ook? Ook. Ook. Ook? Ook. Ook? Ook. Ook? Ook. Ook! Ook! Ook! Ook? Ook. Ook? Ook. Ook. Ook? Ook. Ook! Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook? Ook! Ook. Ook. Ook. Ook? Ook. Ook? Ook. Ook? Ook? Ook! Ook? Ook. Ook? Ook. Ook? Ook. Ook? Ook!
von Sid Burn
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | #!/usr/bin/perl (-) # Core Module use strict; use warnings; use utf8; use open ':utf8'; use open ':std'; use Memoize; sub fib { my ( $number ) = @_; return 1 if $number <= 1; return fib($number-1) + fib($number-2); } memoize('fib'); for my $i ( 1 .. 100 ) { printf "%.0f / %.0f = %.14f\n", fib($i), fib($i-1), fib($i) / fib($i-1); } |
von e1bart0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #!/usr/bin/env perl (-) ############################## # File: fib.pl # Copyright (C) by Kai Wilker <kai.wilker@googlemail.com> # 2008-02-27 ############################## # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. use strict; use warnings; my @fibonaccis = (1, 1); my @schnitt; push @fibonaccis, $fibonaccis[-1] + $fibonaccis[ @fibonaccis - 2 ] for 1..99; push @schnitt, $fibonaccis[ $_ + 1 ] / $fibonaccis[$_] for 0..99; print "Fibonacci-Zahlen:\n\n"; printf "%.0f\n", $_ for @fibonaccis; print "\n\n\nGoldener-Schnitt:\n\n"; printf "%.14f\n", $_ for @schnitt; |
1 2 3 4 5 6 7 8 9 10 11 12 13 | #!/usr/bin/env python from __future__ import division from itertools import islice def fib_and_golden_ratio(): a = b = 1 while True: yield (a, b / a) a, b = b, a + b def main(): for values in islice(fib_and_golden_ratio(), 100): print '%d, %.50f' % values if __name__ == '__main__': main() |
von audax
1 2 3 4 5 6 7 8 9 10 | from __future__ import division from itertools import islice def fibgen(): n = m = 1 while True: yield n, m n, m = m, n+m print '\n'.join( ("%d\t%d\t%f" % (c, new, new/old) for c, (new, old) in enumerate(islice(fibgen(), 100)))) |
von Prinz Igor
1 2 3 4 5 6 7 8 9 | f1 = 0 f2 = 1 print f1 print f2 for i in range(98): f3 = f1+f2 print '%d %.50f' % (f3,float(f3)/f2) f1 = f2 f2 = f3 |
von Adna rim
1 2 3 4 5 6 7 8 9 10 11 12 | #!/usr/bin/env ruby (-) fibonacci=[1,1] gold_schnitt=[] while fibonacci.size <= 100 gold_schnitt<<fibonacci[-1].to_f/fibonacci[-2].to_f fibonacci<<fibonacci[-1]+fibonacci[-2] end printf("\nFibonacci-Zahlen: ") fibonacci.each {|num| printf('%s ',num)} printf("\n\nGoldener-Schnitt: ") gold_schnitt.each {|num| printf('%s ',num)} puts |
von kart0ffelsack
1 2 3 4 5 6 7 8 9 10 11 12 | fun fib 0 = 0 | fib 1 = 1 | fib n = fib(n-1) + fib(n-2); fun fiblist [] = [] | fiblist (x::xl) = fib(x)::fiblist(xl); fun makelist 0 = [0] | makelist x = makelist(x-1)@[x]; fun golden [] = [] | golden (x::[]) = [] | golden (x::y::xl) = real(y)/real(x)::golden(xl); fiblist(makelist(100)); golden(fiblist(makelist(100))); |
Diese Revision wurde am 11. März 2013 01:31 von Lasall erstellt.