Strukturformel | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemeines | ||||||||||||||||
Name | δ-Valerolacton | |||||||||||||||
Andere Namen |
| |||||||||||||||
Summenformel | C5H8O2 | |||||||||||||||
Kurzbeschreibung |
farblose bis gelbliche oder hellbraune Flüssigkeit | |||||||||||||||
Externe Identifikatoren/Datenbanken | ||||||||||||||||
| ||||||||||||||||
Eigenschaften | ||||||||||||||||
Molare Masse | 100,11 g·mol−1 | |||||||||||||||
Aggregatzustand |
flüssig | |||||||||||||||
Dichte | ||||||||||||||||
Schmelzpunkt |
−13 °C | |||||||||||||||
Siedepunkt | ||||||||||||||||
Dampfdruck | ||||||||||||||||
Löslichkeit |
| |||||||||||||||
Brechungsindex |
| |||||||||||||||
Sicherheitshinweise | ||||||||||||||||
| ||||||||||||||||
Toxikologische Daten | ||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C |
δ-Valerolacton (delta-Valerolacton, Oxan-2-on) ist das pyranoide Lacton der 5-Hydroxyvaleriansäure (5-Hydroxypentansäure), während die stellungsisomeren Tetrahydropyranone Oxan-3-on und Oxan-4-on cyclische Etherketone darstellen.
δ-Valerolacton findet vor allem Verwendung als Monomer für Polyester, das stellungsisomere furanoide γ-Valerolacton (4-Hydroxypentansäurelacton) als biogener Brennstoff und als „grünes“ Lösungsmittel.
Herstellung
Bei der Hydrierung von 2-Pyron (2H-pyran-2-on) – zugänglich in 25%iger Ausbeute durch Umsetzung von 3-Butensäure mit Paraldehyd in einem Gemisch von konzentrierter Schwefelsäure und Eisessig mit einem Ferrocen-basierten Palladium(II)-Komplex wird delta-Valerolacton in 99%iger Ausbeute erhalten.
δ-Valerolacton entsteht in 96%iger Ausbeute bei der Cyclisierung von 5-Bromvaleriansäure – z. B. aus Dihydropyran durch Acidolyse zu δ-Hydroxyvaleraldehyd, anschließende Oxidation zur δ-Hydroxyvaleriansäure und Umsetzung mit Bromwasserstoffsäure – mit Tetraalkylammoniumfluoriden
Ein gängigerer Syntheseweg ist die Baeyer-Villiger-Oxidation von Cyclopentanon mit Peroxytrifluoressigsäure, die δ-Valerolacton in 96%iger Ausbeute liefert.
Die Oxidation kann auch in Gegenwart von Molybdän-Komplexen mit Wasserstoffperoxid durchgeführt werden. Eine „grüne“ Route mit sehr guter Ausbeute von 98 % zeigt die Oxidation von Cyclopentanon mit Wasserstoffperoxid und einer Lipase auf.
Für die großtechnische Produktion von δ-Valerolacton scheint das einfach zugängliche 1,5-Pentandiol das geeignetste Edukt zu sein, das z. B. auch durch destillative Auftrennung des komplexen, so genannten Ol/On-Stoffgemischs bei der Oxidation von Cyclohexan zu Cyclohexanol/Cyclohexanol isoliert werden kann. Die Oxidation von 1,5-Pentandiol wird durch Kupferverbindungen, wie z. B. Kupferchromit katalysiert. Die Reaktionsführung bei Temperaturen über 200 °C ist entscheidend für Umsatz des Edukts und Reinheit des Produkts, wobei sich ein herkömmlicher Rührreaktor als wenig geeignet erweist, da beim Versuch der vollständigen Umsetzung von 1,5-Pentandiol 30–35 % polymere Nebenprodukte gebildet werden.
In einem Rohrreaktor verläuft die Reaktion dagegen wesentlich gezielter zum Produkt, das unter Katalyse mit einem Kupfer(II)-oxid und Zinkoxid-Mischkatalysator reines δ-Valerolacton in 86%iger Ausbeute liefert.
Ein industrieller Prozess führt die katalytische Dehydrogenierung in einem Rohrreaktor an zwei Katalysatorschichten mit unterschiedlichen Gehalten an Kupferoxid mit dem Trägergas Wasserstoff und einem Temperaturgradienten von 300 °C bis 260 °C bei praktisch vollständigem 1,5-Pentandiol-Umsatz, einer δ-Valerolactonselektivität von 96 % und einer δ-Valerolactonreinheit von >99 % durch.
Eigenschaften
Reines δ-Valerolacton ist eine wasserklare, farblose Flüssigkeit mit esterartigem Geruch, die in wässriger Lösung schwach sauer reagiert. Sie erstarrt bei −13 °C, siedet bei 230 °C und besitzt eine dynamische Viskosität von 3,41 mPa·s bei 20 °C. Der Flammpunkt liegt bei 110,5 °C, die Zündtemperatur bei 414 °C. Bei Temperaturen über 370 °C beginnt sich δ-Valerolacton zu zersetzen.
Anwendungen
δ-Valerolacton wird als vielseitiges Zwischenprodukt für Beschichtungen vom Polyester-, Polyurethan-, Acryl- und Vinyltyp verwendet.
Aus δ-Valerolacton lässt sich durch Reaktion mit Phosgen in Gegenwart von 3-Picolin in Ausbeuten bis 87 % und Reinheiten von >98 % 5-Chlorpentanoylchlorid herstellen.
das als Ausgangssubstanz für eine Reihe von Zwischenstufen von Arzneistoffen, wie z. B. Virustatika, Phosphodiesterase-3-Hemmer, wie Cilostazol oder Antikoagulanzien, wie Apixaban breitere Verwendung findet.
Ähnlich wie das weitaus häufiger eingesetzte ε-Caprolacton kann δ-Valerolacton entsprechender Reinheit durch kationische ringöffnende Polymerisation z. B. mit Trifluormethansulfonsäuremethylester zu Poly-δ-Valerolacton und mit anderen Lactonen bzw. δ-Hydroxycarbonsäuren auch durch anionische sowie auch durch enzymatische Polymerisation mittels Lipasen zu copolymeren Polyestern umgesetzt werden, die wegen ihrer Bioabbaubarkeit, Bioverträglichkeit und ihres Permeationsverhaltens als mögliche Implantatmaterialien interessant sind.
Wegen der Tendenz zur Depolymerisation vom Kettenende her (engl. back-biting) und der geringeren Reaktivität des sechsgliedrigen Lactonrings im δ-Valerolacton gegenüber dem siebengliedrigen ε-Caprolacton werden bei der enzymatischen ringöffnenden Polymerisation Polymere mit vergleichsweise niedrigeren Molmassen erzeugt, die aber bei der Verwendung thermophiler Esterasen immerhin zahlenmittlere Molmassen von Mn >2,000 g/mol aufwiesen und das erhaltene Poly-δ-Valerolacton für die Verwendung als hydrophobe Weichsegmente in thermoplastischen Elastomeren oder als Wirkstoffträger für die kontrollierte Arzneistofffreigabe erscheinen lassen.
Die kontrollierte lebende Polymerisation von δ-Valerolacton führt mit dem Katalysator Trifluormethansulfonimid zu Poly-δ-Valerolacton mit dem Katalysatoranteil entsprechenden Molmassen z. B. mit Mn = 9,600 g/mol und in Gegenwart funktioneller Initiatoren, wie z. B. N-(2-Hydroxyethyl)maleinimid zu endständig funktionalisierten telechelen Poly-δ-Valerolactonen mit kontrollierten Molmassen und geringer Polydispersität.
Einzelnachweise
- ↑ Eintrag zu DELTA-VALEROLACTONE in der CosIng-Datenbank der EU-Kommission, abgerufen am 23. Oktober 2021.
- 1 2 3 4 5 6 Eintrag zu delta-Valerolacton in der GESTIS-Stoffdatenbank des IFA, abgerufen am 5. Februar 2017. (JavaScript erforderlich)
- 1 2 3 4 Datenblatt δ-Valerolacton bei Sigma-Aldrich, abgerufen am 10. Juni 2015 (PDF).
- 1 2 3 L.E. Schniepp, H.H. Geller: Dehydrogenation of 1,5-pentanediol. In: J. Amer. Chem. Soc. Band 69, Nr. 6, 1947, S. 1545–1545, doi:10.1021/ja01198a517.
- 1 2 3 4 5 6 BASF, Safety Data Sheet, [https://de.wikipedia.org/w/index.php?title=Wikipedia:Defekte_Weblinks&dwl=http://worldaccount.basf.com/wa/NAFTA/Catalog/ChemicalsNAFTA/doc4/BASF/PRD/30037103/.pdf?title=&asset_type=msds/pdf&language=EN&validArea=US&urn=urn:documentum:ProductBase_EU:09007af8800b6d1b.pdf Die nachstehende Seite ist nicht mehr abrufbar], festgestellt im Februar 2020. (Suche in Webarchiven.) [http://worldaccount.basf.com/wa/NAFTA/Catalog/ChemicalsNAFTA/doc4/BASF/PRD/30037103/.pdf?title=&asset_type=msds/pdf&language=EN&validArea=US&urn=urn:documentum:ProductBase_EU:09007af8800b6d1b.pdf delta-Valerolactone]
- 1 2 Eintrag zu δ-Valerolacton bei TCI Europe, abgerufen am 5. Februar 2017.
- ↑ M. Nakahawa, J. Saegusa, M. Tonozuka, M. Obi, M. Kiuchi, T. Hino, Y. Ban: 5,6-Dihydro-2H-pyran-2-one and 2H-Pyran-2-one. In: Org. Synth., Coll. Vol. Band 6, 1977, S. 462–454, doi:10.15227/orgsyn.056.0049.
- ↑ H.M. Ali, A.A. Naiini, C.H. Brubaker Jr.: Selective reduction of conjugated double bonds with molecular hydrogen and palladium(II) complexed to ferrocenylamine sulfide catalysts. In: Tetrahedron Lett. Band 32, Nr. 40, 1991, S. 5489–5492, doi:10.1016/0040-4039(91)80065-E.
- ↑ L.E. Schniepp, H.H. Geller: Preparation of Dihydropyran, δ-Hydroxyvaleraldehyde and 1,5-Pentanediol from Tetrahydrofurfuryl Alcohol. In: J. Am. Chem. Soc. Band 68, Nr. 8, 1946, S. 1646–1648, doi:10.1021/ja01212a085.
- ↑ R. Gaudry, L. Berlinguet: Étude de la synthèse de la proline par cyclisation d’un acide valérianique dihalogéné. In: Can. J. Research. 27b, Nr. 4, 1949, S. 282–292, doi:10.1139/cjr49b-030.
- ↑ T. Oii, H. Sugimoto, K. Doda, K. Maruoka: Esterification of carboxylic acids catalyzed by in situ generated tetraalkylammonium fluorides. In: Tetrahedron Lett. Band 42, Nr. 52, 2001, S. 9245–9248, doi:10.1016/S0040-4039(01)02035-4.
- 1 2 N. Isenberg, J.B. Leibsohn, V.E. Merola: 5-Bromopentanoic acid and 2,5-dibromopentanoic acid. In: Canadian Journal of Chemistry. 40, 1962, S. 831, doi:10.1139/v62-126.
- ↑ S.E. Jacobson, R. Tang, F. Mares: Oxidation of cyclic ketones by hydrogen peroxide catalysed by Group 6 metal peroxo complexes. In: J. Chem. Soc., Chem. Commun. 1978, S. 888–889, doi:10.1039/C39780000888.
- ↑ A.J. Kotlewska, F. van Rantwijk, R.A. Sheldon, I.W.C.E. Arends: Epoxidation and Baeyer–Villiger oxidation using hydrogen peroxide and a lipase dissolved in ionic liquids. In: Green Chem. Band 13, Nr. 8, 2011, S. 2154–2160, doi:10.1039/C1GC15255F.
- ↑ Patent DE10100552: Verfahren und Vorrichtung zur destillativen Aufarbeitung von 1,6-Hexandiol, 1,5-Pentandiol und Caprolacton. Angemeldet am 9. Januar 2001, veröffentlicht am 11. Juli 2002, Anmelder: BASF AG, Erfinder: M. Gall, G. Kaibel, T. Krug, H. Rust, F. Stein.
- ↑ S. Oka: Synthesis of δ-Valerolacton. In: Bull. Inst. Chem. Res., Kyoto University. Band 39, Nr. 4–5, 1961, S. 322–324 ().
- ↑ Patent EP2373637: Verfahren zur Herstellung von delta-Valerolacton in der Gasphase. Angemeldet am 2. Dezember 2009, veröffentlicht am 22. Mai 2013, Anmelder: BASF SE, Erfinder: R. Pinkos, C. Bauduin, A. Paul, G. Fritz, H. Wagner.
- ↑ BASF-Broschüre, Solvent-borne and high-solids coatings
- ↑ Patent WO2001064614: Verfahren zur Herstellung von Chlorcarbonsäurechloriden. Angemeldet am 28. Februar 2001, veröffentlicht am 7. September 2001, Anmelder: BASF AG, Erfinder: A. Stamm, H.-J. Kneuper, J. Henkelmann, T. Weber, R. Busch.
- ↑ Patent EP0509469: Synthetic compounds suitable for the therapy of infections caused by rhinoviruses. Angemeldet am 15. April 1992, veröffentlicht am 21. Oktober 1992, Anmelder: Repla Chemical Ltd., Erfinder: M. Artico, F. Corelli, S. Massa, A. Mai.
- ↑ Pharmaceutical Substances: Syntheses, Patents and Applications of the most relevant APIs. Herausgegeben von Axel Kleemann, Jürgen Engel, Bernhard Kutscher, Dietmar Reichert, Thieme Verlag, 5th Edition, Sept. 2008, ISBN 978-3-13-558405-8
- ↑ J. Wang, P. Wang, L. Liu, H. Zhang, Z. Shang, Synthesis of apixaban intermediate, J. Hebei Univ. Sci. Technol., 35, 334, (2014).
- 1 2 H.R. Kricheldorf, R. Dunsing, A. Serra: Polylactones. 10. Cationic polymerization of δ-Valerolacton by means of alkylating agents. In: Macromolecules. Band 20, Nr. 9, 1987, S. 2050–2057, doi:10.1021/ma00175a002.
- ↑ P. Kurcok, J. Penczek, J. Franek, Z. Jedlinski: Anionic polymerization of lactones. 10. Anionic block copolymerization of δ-Valerolacton and L-Lactide initiated with potassium methoxide. In: Macromolecules. Band 25, Nr. 9, 1992, S. 2282–2289, doi:10.1021/ma00035a001.
- ↑ S. Kobayashi: Lipase-catalyzed polyester synthesis – A green polymer chemistry. In: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. Band 86, Nr. 4, 2010, S. 338–365, doi:10.2183/pjab.86.338, PMC 3417799 (freier Volltext).
- ↑ H. Cao, H. Han, G. Li, J. Yang, L. Zhang, Y. Yang, X. Fang, Q. Li: Biocatalytic Synthesis of Poly(δ-Valerolactone) Using a Thermophilic Esterase from Archaeoglobus fulgidus as Catalyst. In: Int. J. Mol. Sci. Band 13, Nr. 10, 2012, S. 12232–12241, doi:10.3390/ijms131012232.
- ↑ R. Kakuchi, Y. Tsuji, K. Chiba, K. Fuchise, R. Sakai, T. Satoh, T. Kakuchi: Controlled/Living Ring-Opening Polymerization of δ-Valerolactone Using Triflylimide as an Efficient Cationic Organocatalyst. In: Macromolecules. Band 43, Nr. 17, 2010, S. 7090–7094, doi:10.1021/ma100798u.