Die Deligne-Kohomologie wird in der Mathematik, speziell der Algebraischen Geometrie, zur Konstruktion sekundärer charakteristischer Klassen genutzt. Sie wurde um 1972 von Pierre Deligne eingeführt (unveröffentlicht).

Definition

Sei eine glatte Mannigfaltigkeit und die Garbe der komplexwertigen Differentialformen. Für ein ist der Deligne-Komplex definiert durch

.

Hierbei ist der Kokettenkomplex mit für und für , der Kegel ist der Abbildungskegel der durch die Inklusionen von Garben und gegebenen Kettenabbildung und bezeichnet den Kettenkomplex mit .

Die -te Deligne-Kohomologie ist

.

Man beachte, dass für unterschiedliche unterschiedliche Komplexe verwendet werden.

Eigenschaften

Lange exakte Sequenz

passt in eine exakte Sequenz

.

Hierbei bezeichnet die geschlossenen Differentialformen und die De-Rham-Kohomologie.

Weiter ist

und die Komposition

ist das negative des Bockstein-Homomorphismus der kurzen exakten Sequenz .

Insbesondere gilt für -dimensionale, geschlossene, orientierbare Mannigfaltigkeiten:

.

Produktstruktur

Es gibt ein eindeutig bestimmtes Produkt , so dass zu einem gradierten kommutativen Ring mit folgenden Eigenschaften wird:

  • für jede glatte Abbildung ist ein Ringhomomorphismus
  • für alle ist ein Ringhomomorphismus
  • für alle ist ein Ringhomomorphismus
  • für und für alle gilt
.

Hierbei sind die Homomorphismen aus der obigen langen exakten Sequenz.

Anwendung: Sekundäre charakteristische Klassen

Komplexe Vektorbündel

Jedem komplexen Vektorbündel mit Zusammenhangsform über einer Mannigfaltigkeit kann man (auf für Bündelabbildungen natürliche Weise) Klassen zuordnen, so dass der Homomorphismus (aus der obigen exakten Sequenz)

auf abbildet, wobei die -te Chernform und die -te Chernklasse – deren Bild in gerade die De-Rham-Kohomologieklasse von ist – bezeichnet.

Falls ein flacher Zusammenhang auf einem trivialisierbaren Vektorbündel ist, erhält man

.

Falls zusätzlich ist, definiert

die Chern-Simons-Invariante von .

Reelle Vektorbündel

Für ein reelles Vektorbündel mit Zusammenhang definiere

.

Für eine -dimensionale Riemannsche Mannigfaltigkeit betrachte den Levi-Civita-Zusammenhang und definiere die (Riemannsche) Chern-Simons-Invariante durch

.

ist eine konforme Invariante.

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.