Gammaastronomie oder Gammastrahlen-Astronomie ist die Erforschung des Weltraums mittels Gammateleskopen. Aufgrund des viel höheren Energiebereichs der Gammaquanten (> 500 keV) im Vergleich zu sichtbarem Licht (~ 1 eV) und damit einhergehend auch der z. T. völlig unterschiedlichen Ursachen, erlaubt die Gammaastronomie Einblicke in neue Phänomene im Universum, insbesondere gewaltige Explosionen und Kollisionen von Sternen und anderen Himmelskörpern. Die Gammaastronomie öffnete somit ein Fenster in ganz andere Bereiche der Astronomie.

Grundlagen

Weltraumgestützte Gammaastronomie

Dieser Zweig der Astronomie ist noch relativ jung, da es auf der Erde nicht möglich ist, Gammastrahlen aus dem Weltraum aufzufangen, da diese von der Erdatmosphäre absorbiert werden. Wissenschaftler, die Gammastrahlenquellen im Weltraum untersuchen wollen, müssen sich deshalb auf entsprechende Observatorien verlassen, die auf Satelliten die Erde umkreisen. Es ist jedoch auch außerhalb der Erdatmosphäre nicht möglich, Gammastrahlenquellen wie im sichtbaren Licht mittels eines Linsen- oder Spiegelteleskops zu beobachten, da diese hochenergetischen Strahlen nicht von Linsen gebrochen und nicht von Spiegeln reflektiert werden. Man verwendet daher sandwichartig übereinander gelagerte Szintillationszähler bei denen beim Durchgang eines Gammaphotons durch ein bestimmtes Material Lichtblitze erzeugt werden: Die Lichtblitze werden durch Halbleiter-Photomultiplier gemessen, wobei ihre Spur durch den Detektorstapel eine grobe Richtungsabschätzung des einfallenden Gammaphotons auf ein paar Grad genau ermöglicht.

Gammaastronomie am Erdboden

Mit bildgebenden Tscherenkow-Teleskopen ist es seit Anfang der 2000er Jahre möglich, Gammastrahlen indirekt vom Erdboden aus zu beobachten, indem man die Wechselwirkung der kosmischen Gammastrahlung mit der Erdatmosphäre beobachtet. Hierbei entstehen beim Zusammenprall der Gammaphotonen mit den Molekülen der Hochatmosphäre Sekundärteilchenschauer, welche wiederum beim Flug durch die Atmosphäre Tscherenkow-Licht aussenden. Der dadurch in Flugrichtung der Teilchen entstehende (d. h. auf den Erdboden) gerichtete kegelförmige Lichtblitz kann mit Tscherenkow-Teleskopen gemessen werden.

Geschichte

Anfänge

Auch wenn schon in den 1940er und 1950er Jahren vermutet wurde, dass es Gammastrahlen im Weltraum geben könnte, so konnte doch erst der Satellit Explorer 11 (gestartet am 27. April 1961), der nur für diesen Zweck gebaut wurde, Gammastrahlen entdecken. Während seiner 4 Monate langen Mission entdeckte er 22 Gammastrahlenereignisse.

Gammasatelliten

Explorer 11 war der erste einer Reihe von Satelliten, die von nun an regelmäßig im Orbit Gammastrahlen beobachten:

  • OSO-3 entdeckte 1967 Gammastrahlen-Quellen entlang unserer Galaxie, der Milchstraße, die sich um den Halo konzentrierten.
  • Die Vela-Satelliten, eigentlich amerikanische Spionagesatelliten, die Atomwaffentests aufspüren sollten, entdeckten zwischen Juli 1969 bis April 1979 zum ersten Mal die sogenannten Gammablitze.
  • SAS-2 (NASA) und COS-B (ESA) konnten in den 1970er Jahren erstmals detaillierte Karten über das Gammaspektrum im Weltraum liefern.
  • CGRO, ein 17-Tonnen-Satellit der Superlative, lieferte in den 1990er Jahren enorme Datenmengen über Gammastrahlenquellen und erweiterte unser Wissen in diesem Bereich enorm. Er musste jedoch 2000 zum Absturz gebracht werden.
  • INTEGRAL, ein Satellit mit noch genauerer Auflösung, den die ESA am 17. Oktober 2002 in den Orbit gebracht hat.
  • Fermi Gamma-ray Space Telescope, ein Weitwinkel-Gammastrahlen-Weltraum-Teleskop (vormaliger Name Gamma-ray Large Area Space Telescope, GLAST) wurde am 11. Juni 2008 in den Orbit gebracht.

Gammateleskope am Erdboden

Bei der erdgebundenen Beobachtung von Gammastrahlen sind, nach einer Reihe von kleineren Versuchsprojekten, zwei wegweisende Projekte zu nennen, die sich im Betrieb befinden:

  • H.E.S.S. (High Energy Stereoscopic System) in Namibia, welches aus 4 Einzelteleskopen mit einem Durchmesser von jeweils 13 Metern sowie einem Großteleskop mit 614 m² Spiegelfläche in der Mitte des quadratischen Arrays besteht. Die Spiegel der einzelnen Teleskope bestehen wiederum aus 400 runden (60 cm Durchmesser) bzw. 875 sechseckigen (90 cm Kante-zu Kante) Segmenten.
  • MAGIC (Major Atmospheric Gamma-Ray Imaging Cherenkov Telescope) auf La Palma, Kanarische Inseln. Das Teleskop hat einen 17 Meter großen Segmentspiegel aus 1000 einzelnen Aluminiumplatten und kann aufgrund seiner Beweglichkeit insbesondere zur Beobachtung der kurzlebigen Gammablitze benutzt werden. Es ist Nachfolger des HEGRA Atmospheric Cherenkov Telescope System an gleicher Stelle.

Forschungsobjekte der Gammaastronomie

Aufgrund der bereits erwähnten hohen Energie der Gammastrahlung (über 105 eV im Vergleich zu Licht mit ~1,5…3 eV) müssen auch die Entstehungsmechanismen dieser Strahlung ganz andere als die des Lichts sein. In der Mehrzahl sind dies dramatische Explosionen und Kollisionen im Weltall:

Die höchste bisher beobachte Photonenenergie von 16 TeV, beobachtet mit dem HEGRA-Teleskop, hatte ihre Quelle im Blazar Markarjan 501.

Siehe auch

Astronomie, Satellit, Teleskop, Gammastrahlung, Tscherenkow-Strahlung, Röntgenastronomie

Literatur

  • Felix A. Aharonian: High energy gamma-ray astronomy. American Inst. of Physics, Melville 2009, ISBN 978-0-7354-0616-2
  • Poolla V. Ramana Murthy, A. W. Wolfendale: Gamma-ray astronomy. Cambridge Univ. Press, Cambridge 1993, ISBN 0-521-42081-4
  • Johannes A. Bleeker, W. Hermsen: X-ray and gamma-ray astronomy. Pergamon Pr. Oxford 1989, ISBN 0-08-040158-9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.