In der Mathematik ist Gromovs Satz über Betti-Zahlen ein Lehrsatz der globalen riemannschen Geometrie von Michail Leonidowitsch Gromow.

Satz

Sei eine -dimensionale vollständige riemannsche Mannigfaltigkeit nichtnegativer Schnittkrümmung. Dann gilt für die Betti-Zahlen (mit Koeffizienten in einem beliebigen Körper ):

.

(Gromovs ursprüngliche Abschätzung war doppelt-exponentiell, die obige Verbesserung geht auf Abresch zurück. Die vermutete optimale rechte Seite ist .)

Allgemeiner beweist Gromov, dass für eine -dimensionale geschlossene riemannsche Mannigfaltigkeit mit Schnittkrümmung und Durchmesser die Ungleichung

für eine Konstante gilt.

Einzelnachweise

  1. M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. (online)
  2. U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology. II. Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 475–502.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.