Die Hamilton-Funktion in der Theorie der optimalen Steuerungen wurde von Lew Pontrjagin als Teil seines Maximumprinzips entwickelt. Sie ähnelt der Hamilton-Funktion der Mechanik, aber unterscheidet sich doch von ihr. Pontrjagin zeigte, dass eine notwendige Bedingung für das Lösen eines Optimalsteuerungsproblems ist, dass die gewählte Steuerung die Hamilton-Funktion minimieren muss.

Notation und Problemstellung

Eine Steuerung soll so gewählt werden, dass folgendes Zielfunktional minimiert wird

wobei den Zustand des Systems beschreibt, welcher sich gemäß der Differentialgleichungen

entwickelt, und die Steuerung folgenden Einschränkungen genügen muss

Des Weiteren ist eine beliebige Funktion des Zielzustandes nach der Zeit sowie die Lagrangefunktion, welche die Dynamik des betrachteten Systems beschreibt.

Definition der Hamilton-Funktion

wobei die Lagrange-Multiplikatoren sind, deren Komponenten die adjungierten Zustände beschreiben.

Literatur

  • Velimir Jurdjevic: Geometric Control Theory (= Cambridge Studies in Advanced Mathematics. Band 52). Cambridge University Press, Cambridge u. a. 2008, ISBN 978-0-521-05824-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.