In der Mathematik ist eine Hyperfunktion eine Generalisierung von Funktionen als Sprung von einer holomorphen Funktion auf eine andere holomorphe Funktion auf einer gegebenen Grenze :
Geschichte
Es gibt unterschiedliche Zugänge zur Theorie der Hyperfunktionen. Mikio Satō führte im Jahr 1958 als erster vor allem auf Basis der Arbeiten von Alexander Grothendieck Hyperfunktionen ein. Er definierte sie in einem abstrakten Sinn als Randwerte auf der reellen Achse. So verstand Sato unter Hyperfunktionen Paare von Funktionen , die für beziehungsweise für modulo dem Paar , wobei eine ganze analytische Funktion ist, analytisch sind. In einer zweiten Arbeit erweiterte er mit Hilfe der Garbenkohomologietheorie das Konzept der Hyperfunktionen auf Funktionen im . Dieser Zugang von Sato für Hyperfunktionen im ist recht umständlich. So entwickelte André Martineau mit Hilfe der Theorie analytischer Funktionale einen weiteren Zugang zu den Hyperfunktionen.
Analytisches Funktional
Sei eine kompakte Teilmenge. Im Folgenden wird mit der Raum der Funktionen bezeichnet, die auf analytisch also ganze Funktionen sind. Der topologische Dualraum ist der Raum der auf getragenen analytischen Funktionale. Das heißt, es handelt sich um den Raum der Linearformen auf , die für alle Umgebungen von die Ungleichung
für alle erfüllen. Der Raum der auf getragenen analytischen Funktionale ist also ein Distributionenraum. Mit wird der topologische Vektorraum der glatten Funktionen bezeichnet. Da ein dichter Unterraum ist, kann man den Distributionenraum mit einem Unterraum von identifizieren.
Definition
Nach Mikio Sato
Eine Hyperfunktion in einer Dimension ist nach Sato durch ein Paar holomorpher Funktionen, die durch einen Rand getrennt werden, dargestellt. In den meisten Fällen ist ein Teil der reellen Zahlenachse. In diesem Fall ist in einer offenen Teilmenge der unteren komplexen Halbebene und in einer offenen Teilmenge der oberen komplexen Halbebene definiert. Eine Hyperfunktion ist der „Sprung“ von zu über den Rand .
Nach André Martineau
Sei eine offene und beschränkte Teilmenge. Dann ist der Raum der Hyperfunktionen auf durch
definiert.
Beispiele
Literatur
- Lars Hörmander: The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Second Edition, ISBN 3-540-52345-6, Kapitel IX
- A. Kaneko: Hyperfunction. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
- Eric W. Weisstein: Hyperfunction. In: MathWorld (englisch).