In der Theorie dynamischer Systeme bezeichnet man als Limesmengen (oder Grenzwertmenge) diejenigen Punkte des Zustandsraums, denen sich Orbits (für positive oder negative Zeit) unendlich oft annähern.

Definition

Sei ein dynamisches System mit (diskret) oder (kontinuierlich). T ist meist die Zeit und X der Zustandsraum. Sei ein Punkt des Zustandsraumes.

Die -Limesmenge von ist

.

Die -Limesmenge von ist

.

Alternativ lassen sich Limesmengen auch wie folgt charakterisieren:

,
.

Die Limesmengen sind abgeschlossen und invariant unter . Falls kompakt ist, sind die Limesmengen nicht leer.

Typen

Literatur

  • Gerald Teschl: Ordinary Differential Equations and Dynamical Systems (= Graduate Studies in Mathematics. Band 140). American Mathematical Society, Providence 2012, ISBN 978-0-8218-8328-0 (mat.univie.ac.at).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.