Als Liouvillesche Zahl, benannt nach Joseph Liouville, bezeichnet man in der Zahlentheorie eine reelle Zahl welche die Bedingung erfüllt, dass für jedes natürliche ganze Zahlen und mit existieren, sodass gilt:
Irrationalität und Transzendenz
Alle Liouvilleschen Zahlen sind irrational: Für jede rationale Zahl mit ganzzahligem Zähler und ganzzahligem Nenner gibt es eine ganze Zahl mit (vgl. Archimedisches Axiom). Wenn nun und ganze Zahlen mit und sind, dann gilt:
1844 zeigte Liouville, dass Zahlen mit dieser Eigenschaft nicht nur irrational sind, sondern auch transzendent. Dies war der erste Beweis der Transzendenz einer Zahl, der Liouvilleschen Konstante:
Alle Liouvilleschen Zahlen sind transzendent, aber nicht alle transzendenten Zahlen sind Liouvillesch. So sind beispielsweise die Eulersche Zahl e und die Kreiszahl π transzendent, aber nicht Liouvillesch.
Literatur
- Joseph Liouville: Nouvelle démonstration d’un théorème sur les irrationelles algébriques, inséré dans le Compte rendu de la dernière séance. In: Comptes rendus de l’Académie des sciences. Band 18, 1844, S. 910–911 (Digitalisat [abgerufen am 24. November 2020]).
- S. V. Kotov: Liouville number. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
Weblinks
- Eric W. Weisstein: Liouville’s Constant. In: MathWorld (englisch).