In der Theorie der gewöhnlichen Differentialgleichungen erhält man aus dem Satz von Peano und dem Satz von Picard-Lindelöf die Existenz einer lokalen Lösung eines gegebenen Anfangswertproblems. Man ist vor allem daran interessiert, ob man diese Lösung immer weiter fortsetzen kann, bis man zu einer nicht-fortsetzbaren Lösung (gelegentlich auch maximale Lösung genannt) gelangt. In einem zweiten Schritt ist man an dem Grund für die Nicht-Fortsetzbarkeit interessiert. Dies wird durch den Satz vom maximalen Existenzintervall geklärt.

Typischerweise werden die Ergebnisse in folgender Reihenfolge angewandt:

  • Zunächst zeigt man mit dem Satz von Peano oder dem Satz von Picard-Lindelöf die Existenz einer (ggf. eindeutigen) lokalen Lösung des Anfangswertproblems.
  • Daraus folgt mit dem unten angegebenen Satz die Existenz einer nicht-fortsetzbaren Lösung des Anfangswertproblems. Deren Eindeutigkeit bekommt man als Anwendung der gronwallschen Ungleichung.
  • Mit Hilfe des Satzes vom maximalen Existenzintervall kann man durch Ausschluss der übrigen Alternativen (beispielsweise mit Vergleichsargumenten) folgern, dass diese nicht-fortsetzbare Lösung global ist.

Im Folgenden sei stets .

Existenz einer nicht-fortsetzbaren Lösung

Sei und stetig. Weiter sei eine Lösung von

auf . Dann gibt es ein und eine Lösung obiger Differentialgleichung auf mit den Eigenschaften:

  • auf .
  • Es gibt kein , so dass zu einer Lösung auf fortgesetzt werden kann.

Dieser Satz wird bewiesen, indem man eine partielle Ordnung auf der Menge aller Lösungen derart einführt, dass maximale Elemente stets nicht-fortsetzbare Lösungen sind. Deren Existenz wird mit dem Lemma von Kuratowski-Zorn bewiesen. Details sind im Beweisarchiv zu finden. Auf Grund dieses Beweises wird die nicht-fortsetzbare Lösung gelegentlich auch als maximale Lösung bezeichnet. Man verwechsle dies aber nicht mit dem Begriff der maximalen Lösung eines nicht-eindeutig lösbaren Anfangswertproblems (für stetiges ).

Der Satz vom maximalen Existenzintervall

Hat man eine nicht-fortsetzbare Lösung vorliegen, möchte man wissen, was am Rand ihres Definitionsbereichs passiert. Das Ausschließen dieses Phänomens würde dann nämlich Globalität dieser Lösung nach sich ziehen.

Formulierung

Sei und stetig; dabei sei explizit zugelassen. Betrachte die Differentialgleichung

Dann gilt für jede nicht-fortsetzbare Lösung

  • (Globalität) oder

Hierin sei vereinbart.

Variante für lokal Lipschitz-stetige Differentialgleichung

Seien , stetig sowie lokal Lipschitz-stetig in der zweiten Variablen und eine nicht-fortsetzbare Lösung von . Dann gilt

  • (Globalität) oder
  • oder
  • es gibt eine Folge , so dass der Grenzwert existiert mit .

Literatur

  • Herbert Amann: Gewöhnliche Differentialgleichungen. 2. Auflage. Gruyter – de Gruyter Lehrbücher, Berlin / New York 1995, ISBN 3-11-014582-0.
  • Wolfgang Walter: Gewöhnliche Differentialgleichungen. 6. Auflage. Springer-Verlag, Berlin / Heidelberg / New York 1996, ISBN 3-540-59038-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.