Eine projektive Familie von Wahrscheinlichkeitsmaßen, kurz projektive Familie, manchmal auch konsistente Familie (von Wahrscheinlichkeitsmaßen) genannt, ist in der Wahrscheinlichkeitstheorie eine Familie von Wahrscheinlichkeitsmaßen, an deren Verteilungen der Projektionen auf die Komponenten besondere Anforderungen gestellt werden. Projektive Familien finden beispielsweise Verwendung bei dem Beweis des Satzes von Andersen-Jessen oder der Formulierung des Erweiterungssatzes von Kolmogorov, der die Existenz von Wahrscheinlichkeitsmaßen mit vorgegebenen Eigenschaften auf überabzählbaren Produkträumen garantiert und dadurch auch wichtige Existenzaussagen für stochastische Prozesse liefert.

Definition

Gegeben sei eine beliebige nichtleere Indexmenge und Messräume für . Für beliebiges sei

das Produkt der Messräume und

die Projektion auf die Komponenten der Indexmenge . Des Weiteren sei die Menge aller nichtleeren, endlichen Teilmengen von .

Eine Familie von Wahrscheinlichkeitsmaßen heißt dann eine projektive Familie von Wahrscheinlichkeitsmaßen, wenn für jede Teilmenge der endlichen Menge gilt, dass

ist. Die Wahrscheinlichkeitsmaße der kleineren Indexmenge sollen also mit der Verteilung der Wahrscheinlichkeitsmaße der großen Indexmenge unter der Projektion auf die Komponenten übereinstimmen.

Beispiel

Gegeben sei eine beliebige Indexmenge und ein Messraum

versehen mit einem Wahrscheinlichkeitsmaß . Aufgrund der Eigenschaften der Projektion gilt für . Somit ist jede Familie

projektiv.

Bemerkung

Das obige Beispiel zeigt, dass die Projektivität einer Familie von Wahrscheinlichkeitsmaßen notwendig für die Existenz eines Wahrscheinlichkeitsmaßes auf dem Produktraum ist. Für Borel’sche Räume liefert der Erweiterungssatz von Kolmogorov auch die Umkehrung. Hier bestimmt die projektive Familie ein Wahrscheinlichkeitsmaß auf dem Produktraum bereits eindeutig.

Literatur

  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, S. 294, doi:10.1007/978-3-642-36018-3.
  • Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 204–208, doi:10.1007/978-3-642-21026-6.
  • David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 3-540-21676-6, S. 555, doi:10.1007/b137972.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.