Der Satz von Osgood (nach William Osgood) ist eine Aussage der Funktionentheorie und besagt, dass jede injektive holomorphe Funktion eine biholomorphe Abbildung auf ihr Bild ist.

Satz

Sei offen und eine injektive holomorphe Funktion. Dann ist offen und die Umkehrabbildung ist holomorph, also die Abbildung biholomorph.

Da Holomorphie eine lokale Eigenschaft ist, gilt der Satz auch für Abbildungen zwischen komplexen Mannigfaltigkeiten.

Unterschied zum reellen Fall

Für reell-analytische Funktionen gilt die Aussage des Satzes nicht. Beispielsweise ist mit bijektiv und analytisch, aber die Umkehrfunktion ist im Nullpunkt nicht mehr analytisch.

Literatur

  • Raghavan Narasimhan: Several Complex Variables., University of Chicago Press, Chicago 1971, ISBN 0-226-56817-2
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.