Ein Zonotop bezeichnet in der Geometrie die Minkowski-Summe von Liniensegmenten (der Generatoren des Zonotops). Es ist also ein Zonotop im d-dimensionalen Raum, falls Vektoren mit d Einträgen sind.
Eigenschaften
Ein Zonotop ist immer ein konvexes Polytop, und nach der hier gewählten Definition ist der Ursprung das Zentrum des Zonotops. Jedes Zonotop ist punktsymmetrisch zu seinem Zentrum. Jede Facette eines Zonotops ist wiederum ein Zonotop. Das obige Zonotop ist eine Projektion des k-dimensionalen Einheitswürfels in den d-dimensionalen Raum, also in Matrixnotation , wobei die Matrix mit den Generatoren als Spalten eine Projektion darstellt und der Einheitswürfel ist.
Zonoeder
Ein Zonotop im 3-dimensionalen Raum wird als Zonoeder bezeichnet. Dabei wird meist vorausgesetzt, dass sich der Zonoeder nicht auf eine Ebene beschränkt, die Generatoren also nicht koplanar sind.
Konstruktion eines Zonoeders
Ecken, Kanten und Facetten eines Zonoeders können aus den Generatoren konstruiert und dann zum Beispiel graphisch dargestellt werden. Dabei ist die induktive Konstruktion besonders anschaulich: Zu einem bereits konstruierten Zonotop wird ein neues Liniensegment hinzuaddiert. Zum Beispiel soll zum bereits konstruierten 3-dimensionalen Einheitswürfel das Segment mit hinzuaddiert werden. Dazu wird der Würfel entlang den Kanten aufgeschnitten, die das Segment tangieren. Danach werden die Hälften jeweils um den Vektor und verschoben, und die entstandene Lücke durch die neue Zone geschlossen.
- Würfel aufschneiden
- Hälften heben
- Lücke füllen
Beispiel
Der Zonoeder mit den Generatoren stellt den Oktaederstumpf dar.
Literatur
- Harold Scott MacDonald Coxeter: Regular Polytopes. Dover Publications, New York 1973, ISBN 0-486-61480-8, S. 27–30.
- David Eppstein: Zonohedra and zonotopes. In: Mathematica in Education and Research. 5. Jahrgang, Nr. 4, 1996, S. 15–21 (uci.edu).
Weblinks
- The Geometry Junkyard: Zonohedra and Zonotopes auf ics.uci.edu
- Online Zonotope Builder and Viewer auf decatur.de