Bremswegberechnungen

1. Häufigstes Beispiel: Anhalteweg von Personenwagen bei verschiedenen Geschwindigkeiten auf trockener Fahrbahn bei 2 Sekunden Reaktionszeit

1.1. Abbildung

Damit ein Fahrzeug anhält, muss der Fahrer/die Fahrerin zuerst reagieren und dann bremsen. Dabei hat die Geschwindigkeit massgebenden Einfluss. Je höher die Geschwindigkeit, desto mehr Weg legt man in der normalen Reaktionszeit von ca. 2 Sekunden zurück. Der Bremsweg ist zusätzlich abhängig vom Strassenzustand. Bei Nässe ist er rund ein Drittel länger als auf trockener Strasse.

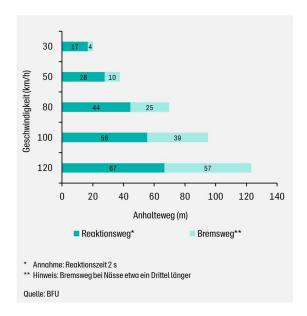


Abbildung 1: Anhalteweg von Personenwagen bei verschiedenen Geschwindigkeiten auf trockener Fahrbahn bei 2 s Reaktionszeit

1.2. Werte zur Abbildung

Geschwindigkeit [km/h]	Reaktionsweg [m]	Bremsweg [m]	Anhalteweg [m]
30	16,7	3,5	20,2
50	27,8	9,8	37,6
80	44,4	25,2	69,6
100	55,6	39,3	94,9
120	66,7	56,6	123,3

Zugrunde liegende Annahmen:

- Personenwagen auf trockener Fahrbahn \rightarrow Verzögerung = 9,8 m/s² bzw. Reibungszahl = 1,0
- Reaktionszeit: 2 Sekunden

2. Allgemeingültige Formeln

eaktionsweg $s_r = v \cdot t_r$	Reaktionsweg s _r	[m]
	Bremsweg s_b	[m]
emsweg $s_b = \frac{v_2}{2 \cdot g \cdot \mu}$	Geschwindigkeit v	[m/s]
-97	Reaktionszeit t_r (i. d. R. 2 Sek.)	[s]
	Erdbeschleunigung g = 9,81	[m/s ²]
	Reibungszahl µ	[-]

Diese allgemein gültigen Formeln aus der Physik sind unbestritten und dienen der BFU zur Sensibilisierung in der Thematik Geschwindigkeit vs. Unfallhäufigkeit und Unfallschwere.

3. Reibungszahlen bei verschiedenen Bedingungen und Verkehrsarten

Die folgenden Reibungszahlen wurden von der AGU Zürich im Auftrag der BFU zusammengetragen. Im Einzelfall können diese deutlich von den Durchschnittswerten abweichen, für generelle Aussagen ist die BFU aber auf Letztere angewiesen. Nebst der Festlegung der Parameter für PW wurden Abschätzungen für Lieferwagen, Lastwagen, Motorräder und Velos (E-Bikes) gemacht. Für E-Bikes gelten die gleichen Werte wie für Velos (allenfalls eher im Bereich der etwas höheren Verzögerungen bzw. der daraus folgend höheren Reibungszahlen; das ist jedoch unter anderem abhängig vom Können der E-Bike-Fahrenden).

Fahrzeugart	Reibungszahl*					
			Nasse Fahrbahn		Trockene Fahrbahn	
	Min.	Max.	Von der BFU verwendete Zahlen	Min.	Max.	Von der BFU verwendete Zahlen
Personenwagen	0,6	0,9	0,75	0,9	1,1	1,00
Lieferwagen	0,5	0,8	0,65	0,6	0,9	0,75
Lastwagen	0,4	0,7	0,55	0,5	0,8	0,65
Motorrad	0,3	0,6	0,46	0,6	1,0	0,80
Velo	0,3	0,5	0,40	0,4	0,7	0,55

 $^{{}^{\}star}\text{Reibungszahl ist zudem abhängig vom Fahrzeugtyp, vom Beladungszustand und von der Fahrerfahrung.}$

4. Tabellen zu den Bremswegen

Daraus ergeben sich folgende Bremswege [m] bei verschiedenen Ausgangsgeschwindigkeiten für verschiedene Fahrzeuge bei unterschiedlichem Zustand der Fahrbahn:

Tabelle 1: Bremsweg [m] bei trockener Fahrbahn

Geschwindigkeit	PW	Lieferwagen	Lastwagen	Motorrad	Velo
15 km/h	0,9	1,2	1,4	1,1	1,6
25 km/h	2,5	3,3	3,8	3,1	4,5
30 km/h	3,5	4,7	5,4	4,4	6,4
45 km/h	8,0	10,6	12,3	10,0	14,5
50 km/h	9,8	13,1	15,1	12,3	=
60 km/h	14,2	18,9	21,8	17,7	=
80 km/h	25,2	33,6	38,7	31,5	=
100 km/h	39,3	52,4	-	49,2	
120 km/h	56,6	75,5	-	70,8	

Tabelle 2: Bremsweg [m] bei nasser Fahrbahn

Geschwindigkeit	PW	Lieferwagen	Lastwagen	Motorrad	Velo
15 km/h	1,2	1,4	1,6	1,9	2,2
25 km/h	3,3	3,8	4,5	5,3	6,1
30 km/h	4,7	5,4	6,4	7,7	8,8
45 km/h	10,6	12,3	14,5	17,3	19,9
50 km/h	13,1	15,1	17,9	21,4	_
60 km/h	18,9	21,8	25,7	30,8	_
80 km/h	33,6	38,7	45,8	54,7	
100 km/h	52,4	60,5	-	85,5	_
120 km/h	75,5	87,1	-	123,1	_

Kontakt

Roland Allenbach, Verantwortlicher Wissensmanagement Tel. + 41 31 390 21 55 r.allenbach@bfu.ch