A-priori-Wahrscheinlichkeit
Die A-priori-Wahrscheinlichkeit (auch Anfangswahrscheinlichkeit, Vortest- oder Ursprungswahrscheinlichkeit) ist in den Naturwissenschaften ein Wahrscheinlichkeitswert, der anhand von allgemeinem Vorwissen bzw. vernünftig erscheinenden Grundannahmen über ein System (zum Beispiel symmetrische Eigenschaften eines Würfels) als naheliegend vermutet wird. Der lateinische Begriff „a priori“ kann in diesem Zusammenhang etwa als „augenscheinlich“ oder „auf den ersten Blick am naheliegendsten“ verstanden werden: Es erscheint beispielsweise vernünftig, dass ein Würfel alle sechs Augenzahlen im Schnitt gleich häufig zeigt, d. h. die A-priori-Wahrscheinlichkeit, jede Augenzahl zu würfeln, ist 1/6.
Die älteste Methode zur Bestimmung von A-priori-Wahrscheinlichkeiten stammt von Laplace: Sofern kein Grund bekannt ist etwas anderes anzunehmen, wird allen elementaren Ereignissen (das sind beim Würfel die möglichen Ergebnisse eines einzelnen Wurfs, also die Augenzahlen 1 bis 6) dieselbe Wahrscheinlichkeit zugeordnet (Indifferenzprinzip). Entsprechend sind bei einem Münzwurf die elementaren Ereignisse „Kopf“ und „Zahl“ a priori gleich wahrscheinlich: Solange kein Grund besteht anzunehmen, die Münze sei manipuliert, weist man beiden Ereignissen dieselbe Wahrscheinlichkeit 1/2 zu. Sollte sich jedoch anhand einer langen Versuchsreihe herausstellen, dass die Elementarereignisse mit (sehr) unterschiedlicher Häufigkeit auftreten, liegt nahe, dass die A-priori-Annahme nicht zutraf, etwa weil das Material der Würfel bzw. die Münze nicht gleichmäßig ist; die im Nachgang einer solchen Versuchsreihe ermittelte Wahrscheinlichkeit nennt man A-posteriori-Wahrscheinlichkeit (die Wahrscheinlichkeit, die sich hinterher herausgestellt hat).
Die Unterschiede zwischen A-priori- und A-posteriori-Wahrscheinlichkeit lassen sich als mathematische Ausdeutung des volkstümlichen Spruchs verstehen: Probieren (=eine A-posteriori-Wahrscheinlichkeit durch eine Versuchsreihe ermitteln) geht über Studieren (=eine A-priori-Wahrscheinlichkeit auf rein theoretischer Grundlage anhand naheliegender Vermutungen festlegen).
Eine Erweiterung des Laplace-Prinzips ist das Prinzip der maximalen Entropie. Hier wird davon ausgegangen, dass man bereits etwas über das abzuschätzende System weiß, aber noch nicht alles. Nun wird argumentiert, dass die A-priori-Wahrscheinlichkeit unter den verbleibenden kompatiblen Wahrscheinlichkeitsverteilungen so gewählt werden muss, dass die (Informations-)Entropie maximal ist. Da die Entropie ein Maß für die „Unsicherheit des Wissens“ darstellt, würde jede andere Wahl implizieren, dass man weitere Informationen über das System hat, was per Definition aber nicht gegeben sein kann.
Falls keinerlei Informationen über das System bekannt sind, reduziert sich dieses Prinzip wieder auf das Indifferenzprinzip.