Apollonisches Problem

Das Apollonische Problem (Problem des Apollonios) ist eines der berühmtesten Probleme der antiken Geometrie. Es geht darum, mit Zirkel und Lineal die Kreise zu konstruieren, die drei beliebige vorgegebene Kreise berühren. Apollonios von Perge (* ca. 265 v. Chr.; † ca. 190 v. Chr.) widmet diesem Problem ein nicht erhaltenes Buch (Über Berührungen).

Da man bei den Ausgangskreisen auch von einem unendlich kleinen Radius und einem unendlich großen Radius ausgehen kann, kann nicht nur von drei Kreisen, sondern auch von Punkten und Geraden (Tangenten) ausgegangen werden. Insgesamt gibt es zehn Kombinationsmöglichkeiten für die gegebenen Stücke, die weiter unten aufgeführt sind.

Da die vollständige Lösung der Probleme alle Konstruktionsfälle mit Berührungen (Tangenten) von Kreisen, Punkten und Geraden löst, sind natürlich auch die Berührkreise am Dreieck enthalten (Ankreis, Inkreis, Umkreis).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.