Bethe-Weizsäcker-Zyklus

Der Bethe-Weizsäcker-Zyklus (auch CN-Zyklus, CNO-Zyklus, CNO-I-Zyklus, Kohlenstoff-Stickstoff-Zyklus) ist eine der acht Fusionsreaktionen des so genannten Wasserstoffbrennens, durch die Sterne Wasserstoff in Helium umwandeln; die anderen sind die Proton-Proton-Reaktion sowie weitere mögliche CNO-Zyklen, die allerdings bei noch höheren Temperaturen ablaufen.

Der Zyklus wurde zwischen 1937 und 1939 von den Physikern Hans Bethe und Carl Friedrich von Weizsäcker entdeckt. Die Namen CN- beziehungsweise CNO-Zyklus leiten sich von den an der Reaktion beteiligten Elementen Kohlenstoff (C), Stickstoff (N) und Sauerstoff (O) ab. Während die Proton-Proton-Reaktion eine wichtigere Rolle bei Sternen mit Größen bis knapp über die Masse der Sonne spielt, zeigen theoretische Modelle, dass der Bethe-Weizsäcker-Zyklus vermutlich die vorherrschende Energiequelle in schwereren Sternen mit etwas mehr als der Sonnenmasse und in allen Riesensternen darstellt. Die Sonne selbst erzeugt nur 1,6 % ihrer Energie durch den Bethe-Weizsäcker-Zyklus. 2020 gelang es mit dem Borexino-Detektor erstmals, Neutrinos aus dem CNO-Zyklus der Sonne nachzuweisen.

Der Bethe-Weizsäcker-Zyklus läuft erst bei Temperaturen über 14 Millionen Kelvin effektiv ab und ist ab 18 Millionen Kelvin vorherrschend. Eine Voraussetzung dafür ist das Vorkommen irgendeines Isotops der Elemente Kohlenstoff, Stickstoff oder Sauerstoff in der Zusammensetzung des Sterns, welche in Folge des Prozesses ineinander umgewandelt werden. Die Umsatzrate ist proportional zur vorhandenen Menge an 12C. Eine Folge des CNO-Prozesses ist, dass sich die Häufigkeiten der ursprünglich vorhandenen C-N-O-Isotope entsprechend der Reaktionsdauer der einzelnen Schritte verschieben: Die Umwandlung von 14N nach 15O hat bei weitem die langsamste Reaktionsrate, also verschieben sich die Häufigkeiten der Isotope stark in Richtung 14N, was sich in Sternen mit Konvektion in der Hülle bei der Spektralanalyse nachweisen lässt. Die relative Häufigkeit von 14N in der „Asche“ (Helium) nach dem Ende des Wasserstoffbrennens ist auch die Grundlage für die Entstehung von 18O während des folgenden Heliumbrennens in Riesensternen (14N+4He→18F→18O). Die CNO-Zyklen weisen eine viel stärkere Abhängigkeit der Reaktionsrate von der Temperatur (18. Potenz) auf, als die p-p-Zyklen (4. Potenz). Das führt im Stern zu einer stärkeren Konzentration der Energiefreisetzung zum Zentrum hin, wodurch in der Kernregion der Energiefluss so hoch ist, dass im Kern Konvektion einsetzt. Auf die Leuchtkraft des Sterns hat der CNO-Zyklus gegenüber dem p-p-Zyklus fast keinen Einfluss, diese ist im Wesentlichen nur von seiner Masse abhängig. Auch in massearmen Hauptreihensternen läuft der CNO-Zyklus ganz langsam ab: Auch wenn dieser keine Rolle in der Energiebilanz spielt, verändert er doch die ursprünglichen Häufigkeiten der beteiligten Isotope.

Da nach gegenwärtiger Meinung beim Urknall kein Kohlenstoff entstehen konnte, war es den Sternen der ersten Generation (Population III) unmöglich, Energie auf diese Art zu erzeugen. In den Spätphasen der Sternentwicklung entsteht jedoch in den Sternen Kohlenstoff durch den Drei-Alpha-Prozess (siehe auch Nukleosynthese), der danach zum einen als Katalysator zur Verfügung steht, zum anderen durch Supernovae und Sternwinde von Riesensternen an das interstellare Medium abgegeben wird, aus dem sich neue Sterne bilden.

Sterne späterer Generationen enthalten daher bereits am Anfang ihrer Entwicklung Kohlenstoff (siehe auch Metallizität).

Beim Bethe-Weizsäcker-Zyklus vollziehen sich im Wesentlichen Fusionen von Wasserstoffkernen 1H (Protonen) mit den schwereren Kernen 12C, 13C, 14N und 15N, daher auch der Name CN-Zyklus. Bei der Fusion wird teilweise Energie in Form von Gammaquanten γ abgegeben. Zwei der entstehenden Zwischenprodukte, 13N und 15O, sind instabil und zerfallen nach kurzer Zeit jeweils unter Aussendung eines Positrons e+ und eines Elektronneutrinos νe (Beta-Plus-Zerfall). Die einzelnen Reaktionsschritte sind nachfolgend aufgeführt.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.