CH-Acidität

CH-Acidität ist in der organischen Chemie die Neigung einer Verbindung, an einem Kohlenstoff-Atom gebundene Wasserstoff-Atome als Protonen abzugeben und damit formal als Säure zu agieren. Da Kohlenstoff selbst nicht sehr viel elektronegativer als Wasserstoff ist, ist die C-H-Bindung in der Regel, im Gegensatz zu N-H- und O-H-Bindungen, nicht sehr polar und die Bereitschaft, ein Carbanion zu bilden, dementsprechend gering. Dies führt zu sehr hohen pKS-Werten bei unsubstituierten Alkanen, z. B. pKS ca. 50 für Ethan. Ist das Kohlenstoffatom jedoch an stark elektronenziehende Gruppen wie Carbonyle (in einem Ester, Keton oder Aldehyd), Sulfone, Nitrile, Trifluormethyl- oder Nitrogruppen gebunden (α-ständig zu diesen Gruppen), so sorgt der stark ausgeprägte negative induktive Effekt dafür, dass die C-H-Bindung am α-Kohlenstoffatom stärker polarisiert und das Proton leichter abspaltbar wird.

Praktisch angewendet wird dies bei Reaktionen mit Enolaten, beispielsweise der Knoevenagel-Kondensation. Bei Einsatz von Derivaten der Malonsäure (pKS ≈ 13) oder Acetylaceton (pKS ≈ 9), die als β-Dicarbonyle recht gut deprotonierbar sind, können diese Reaktionen schon mit vergleichsweise milden Basen wie Ethanoaten oder Triethylamin durchgeführt werden.

Ebenso sorgen C-C-Mehrfachbindungen durch Annäherung der Kohlenstoffatome für eine stärkere Polarisierung, so dass Ethin mit einem pKS von ca. 25 relativ CH-acide ist und Acetylide, z. B. Silberacetylid, bilden kann.

Auch die Bildung eines aromatischen Systems kann die CH-Acidität steigern. Cyclopentadien beispielsweise hat einen pKs-Wert von 16. Es ist relativ stark CH-acid, weil das entstehende Cyclopentadienid-Anion als Aromat mesomeriestabilisiert ist, und beispielsweise als stabiler Komplexligand in Metallocen-Verbindungen auftreten kann.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.