Dichtefunktionaltheorie (statistische Physik)

Die klassische Dichtefunktionaltheorie (DFT, auch klassische Dichtefunktionaltheorie) ist in der statistischen Physik eine Methode, das Verhalten eines Vielteilchensystems (etwa eines Gases in einem Behälter) zu beschreiben. Die DFT ist heutzutage eine Standardtechnik in der Flüssigkeitstheorie. Im Gegensatz zur älteren quantenmechanischen Dichtefunktionaltheorie wird sie auf Vielteilchensysteme angewandt, die mit der klassischen Physik beschrieben werden.

Die klassische DFT ermöglicht es für gegebene Parameter (u. a. Temperatur und von außen vorgegebene Wechselwirkungen) die ortsabhängige Dichte dieses Systems, Korrelationsfunktionen (u. a. Radiale Verteilungsfunktion) und thermodynamische Eigenschaften (Freie Energie, Zustandsgleichung, Phasenübergänge) zu berechnen. Die Stärke der DFT liegt darin, dass sie für inhomogene Systeme (ortsabhängige Teilchendichte) anwendbar ist.

Die Theorie wurde durch Robert Evans (Universität Bristol) 1979 begründet, der das zugrundeliegende Variationsprinzip bewies, wobei er auf ein entsprechendes Prinzip bei quantenmechanischen Vielteilchensystemen bei endlicher Temperatur von N. David Mermin (1965, eine Verallgemeinerung des Hohenberg-Kohn-Theorems) zurückgriff. Die Theorie hat historische Vorläufer in klassischen Untersuchungen von Johannes Diderik van der Waals über die Flüssig-Gas-Grenzfläche (1893) und von Lars Onsager über Phasenübergänge in Flüssigkristallen (1949).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.