Fallbasiertes Schließen

Das fallbasierte Schließen (engl. case-based reasoning, kurz CBR, franz. raisonnement par cas, span. Razonamiento basado en casos) ist ein maschinelles Lernverfahren zur Problemlösung durch Analogieschluss. Das zentrale Element in einem CBR-System ist eine so genannte Fallbasis (Falldatenbank, case memory), in der bereits gelöste Probleme als Fall gespeichert sind. Ein solcher Fall besteht mindestens aus einer Problembeschreibung und einer zugehörigen Problemlösung. Das Ziel ist, zur Lösung eines gegebenen Problems die Lösung eines ähnlichen und früher bereits gelösten Problems heranzuziehen. Damit ahmt man eine menschliche Verhaltensweise nach: Vor ein neues Problem gestellt, erinnert sich der Mensch oft an eine vergleichbare Situation, die er in der Vergangenheit erlebt hat, und versucht, die aktuelle Aufgabe ähnlich zu meistern.

Gelegentlich spricht man auch von erinnerungsbasiertem Schließen.

Einige der frühesten Realisierungen war von Roger Schank und seinen Schülern Anfang der 1980er Jahre (sein Dynamic Memory Modell), so von Janet Kolodner in CYRUS und Michael Lebowitz in IPP. Ein weiterer Pionier war David Waltz in den 1980ern (Memory Based Reasoning) auf den massiv parallelen Rechnern der Thinking Machine Corporation von Danny Hillis. 1995 gab es eine erste internationale Konferenz über CBR.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.