Fusionsenergie
Fusionsenergie bezeichnet mittels großtechnischer Nutzung der thermonuklearen Kernfusion erzeugten Strom. Die Aussicht auf eine praktisch unerschöpfliche Energiequelle ohne das Risiko katastrophaler Störfälle und ohne die Notwendigkeit der Endlagerung langlebiger radioaktiver Abfälle treibt seit den 1960er Jahren internationale Forschungsaktivitäten voran.
Das zurzeit aufwendigste Projekt ist der internationale Forschungsreaktor ITER, ein Tokamak, der seit 2007 in Südfrankreich im Bau ist. Die Inbetriebnahme dieser Anlage, zunächst ohne Tritium, soll 2025 beginnen, erste Deuterium-Tritium-Experimente sind für 2035 geplant. Bis 2040 soll ein Leistungsbetrieb mit brennendem Plasma erreicht werden, in dem zehnmal mehr Fusionsenergie freigesetzt wird als Heizenergie eingekoppelt werden muss (S. 16 in).
In dieser Phase sollen auch wesentliche Design-Entscheidungen für DEMO fallen, ein kleines Kraftwerk (mehrere 100 MW) auf Basis eines vergrößerten Tokamaks. Die ingenieurmäßige Konstruktion von DEMO soll mit enger Beteiligung der Industrie erfolgen. Zwanzig Jahre nachdem ITER ein brennendes Plasma hoher Leistung demonstriert hat, soll DEMO in Betrieb gehen und noch früh in der zweiten Hälfte des Jahrhunderts zeigen, dass großtechnische Stromerzeugung durch Kernfusion möglich ist und eine ausreichende Menge Tritium im Kraftwerk selbst erzeugt werden kann.
Parallel zu den internationalen Großprojekten ITER und DEMO gibt es seit ca. 2010 ein erhöhtes Interesse an Kernfusion von Seiten privat finanzierter Start-up-Unternehmen. Sie verfolgen oft alternative Konzepte zur Fusion und versprechen eine Energieproduktion lange vor ITER (z. B. TAE Technologies oder Commonwealth Fusions Systems). Eine Übersicht über die weltweiten Experimente zur Fusions gibt das Fusion Device Information System der IAEA.
Einen merklichen Beitrag zur Energieversorgung, 1 TW, soll Kernfusion im Laufe des 22. Jahrhunderts leisten (S. 13 in ). Deshalb kann Fusionsenergie keine Rolle bei der weltweiten Energiewende spielen.
Parallel zu der bei ITER angewendeten Technik der Fusion mittels magnetischen Einschlusses wird an der technischen Umsetzung der Trägheitsfusion gearbeitet. Dabei erfolgt nach einer schlagartigen Zufuhr von Energie ein kurzzeitiges Fusionsbrennen, das durch das Auseinanderfliegen des erhitzten Materials wieder beendet wird.