Isodynamischer Punkt
Die beiden isodynamischen Punkte gehören zu den ausgezeichneten Punkten eines Dreiecks.
Gegeben sei ein Dreieck ABC mit den Halbierenden seiner Innen- und Außenwinkel. Ua sei der Schnittpunkt der Winkelhalbierenden von mit der Geraden BC, Va der Schnittpunkt der entsprechenden Außenwinkelhalbierenden mit BC. Entsprechend seien die Punkte Ub und Vb (jeweils auf CA) sowie Uc und Vc (jeweils auf AB) definiert. Dann haben die drei Kreise mit den Durchmessern |Ua Va|, |Ub Vb| und |Uc Vc| zwei Punkte S und S' gemeinsam. S wird als 1. isodynamischer Punkt bezeichnet (Kimberling-Nummer ), S' als 2. isodynamischer Punkt (Kimberling-Nummer ).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.