Kac-Moody-Algebra
Kac-Moody-Algebren, benannt nach Victor Kac und Robert Moody, sind in der mathematischen Theorie der Lie-Algebren untersuchte Algebren. Man geht von einer Matrix mit bestimmten Eigenschaften aus und wendet darauf ein Verfahren an, das an die klassische Konstruktion einer endlichdimensionalen halbeinfachen Lie-Algebra aus einer vorgegebenen Cartan-Matrix angelehnt ist. Man kann dann drei Typen solcher Kac-Moody-Algebren ausmachen. Die Algebren vom endlichen Typ (s. u.) sind die aus der klassischen Theorie bekannten endlichdimensionalen halbeinfachen Lie-Algebren, so dass die Theorie der Kac-Moody-Algebren als eine Verallgemeinerung der klassischen Theorie angesehen werden kann. Dazu kommen zwei weitere Typen, der affine Typ und der indefinite Typ (s. u.), die weder endlichdimensional noch halbeinfach sind.