Klassenkörper

In der algebraischen Zahlentheorie versteht man unter einem Klassenkörper über einem vorgegebenen algebraischen Zahlkörper eine Galoissche Erweiterung , deren Automorphismengruppe zu einer verallgemeinerten Idealklassengruppe des Grundkörpers isomorph ist. Der Isomorphismus motiviert die Bezeichnung von als Klassenkörper. Da jede verallgemeinerte Idealklassengruppe eine abelsche (kommutative) Gruppe ist, sind alle Klassenkörper von abelsche Erweiterungen. Diese Verallgemeinerungen der gewöhnlichen Klassengruppe , also des Quotienten der Gruppe der gebrochenen Ideale von nach der Untergruppe der Hauptideale, müssen im nachfolgenden Abschnitt genau beschrieben werden, um die Klassenkörper über präzise definieren zu können.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.