Kreisschnittebene

Eine Kreisschnittebene ist in der Geometrie eine Ebene (im 3-dimensionalen Raum), die eine Quadrik (Ellipsoid, Hyperboloid, …) in einem Kreis schneidet. Eine Kugel wird von jeder Ebene, mit der sie wenigstens 2 Punkte gemeinsam hat, in einem Kreis geschnitten. Auch bei Rotationsquadriken (Rotations-Ellipsoid, -Hyperboloid, -Paraboloid, -Zylinder, …) ist die Lage einfach: Sie werden von allen Ebenen, die senkrecht zur Rotationsachse sind, in Kreisen geschnitten, falls sie wenigstens 2 Punkte gemeinsam haben. Nicht mehr offensichtlich ist die Lage bei 3-achsigen Ellipsoiden, echt elliptischen Hyperboloiden, Paraboloiden, Zylindern, …, obwohl es in diesen asymmetrischen Fällen sogar mehr Schnittkreise gibt. Es gilt:

  • Jede Quadrik (Fläche im 3-dimensionalen Raum), die Ellipsen enthält, enthält auch Kreise (s. unten).

Quadriken, die nicht dazu gehören, sind: 1) parabolischer Zylinder, 2) hyperbolischer Zylinder und 3) hyperbolisches Paraboloid. Eine umfassende Diskussion aller Fälle ist z. B. in dem Buch von Grotemeyer (s. Literatur) enthalten.

Kreisschnitte von Quadriken wurden früher zur Anfertigung von Modellen verwendet (s. #Weblinks).

Kreisschnittebenen spielen auch in der Kristallographie eine Rolle.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.