Kubische Anisotropie
Die kubische Anisotropie, gehörend zum gleichnamigen Kristallsystem, ist die einfachste Art der Richtungsabhängigkeit eines Materials. Es gibt sie in zwei Formen:
- Die einen Materialien ändern ihr Kraft-Verformungs-Verhalten nicht, wenn sie um 90° um bestimmte, aufeinander senkrecht stehende Achsen, die Orthotropieachsen, gedreht werden (im Bild schwarz, Kochsalzstruktur).
- Die anderen Materialien zeigen identisches Kraft-Verformungs-Verhalten, wenn sie um 120° um die Raumdiagonalen (eine davon im Bild rot) oder um 180° um die Orthotropieachsen gedreht werden:363 (Diamantstruktur, siehe Animation rechts).
Beide Materialgruppen zeigen im Bezugssystem parallel zu diesen Achsen bei kleinen Verformungen keine Kopplung zwischen Normaldehnungen und Schubverzerrungen und identisches Verhalten. Außerhalb dieses linearen Bereichs treten jedoch Abweichungen auf und sie zeigen auch abweichende elektromechanische Eigenschaften. Für die Beschreibung des linear elastischen Verhaltens werden drei Parameter gebraucht; für die anderen #Thermo- und Elektromechanische Eigenschaften werden in der ersten Gruppe weitere drei in der zweiten weitere vier Parameter benötigt.
Den speziellen Fall, dass ein Material (an einem Teilchen) unabhängig von der Belastungsrichtung jeweils dasselbe Kraft-Verformungs-Verhalten zeigt, wird als Isotropie bezeichnet. Den allgemeinen Fall, dass das Kraft-Verformungs-Verhalten von der Belastungsrichtung abhängt, wird dagegen als Anisotropie bezeichnet. Die kubische Anisotropie ist ein Spezialfall der Orthotropie und enthält ihrerseits die Isotropie als Sonderfall. Ein nicht-isotropes, kubisch anisotropes Material ist nicht transversal Isotrop. (Transversale Isotropie ist ein anderer Spezialfall der Orthotropie und enthält ihrerseits auch die Isotropie als Sonderfall.)
Viele Metalle und deren Salze sind kubisch anisotrop, z. B. Halbleitermetalle, die in der Halbleitertechnologie der Elektronik eine wichtige Rolle spielen, Alkalimetalle und deren Salze.