Mantelfläche

Als Mantelfläche oder kurz Mantel bezeichnet man in der Geometrie einen Teil der Oberfläche bestimmter Körper. In diesem Artikel wird die Mantelfläche von Rotationskörpern behandelt, zu denen unter anderem der Zylinder, der Kegel und der Kegelstumpf zählen. Zur Mantelfläche bei Nicht-Rotationskörpern wird auf die jeweiligen Artikel verwiesen (siehe z. B. Pyramide und Prisma). „Boden“ (Grundfläche) und „Deckel“ (Deckfläche) des Körpers werden, falls vorhanden, in der Regel nicht zum „Mantel“ (Mantelfläche) gezählt und gelegentlich als „Stirnflächen“ bezeichnet.

Die Mantelfläche von Zylinder, Kegel und Kegelstumpf kann durch „Abrollen“ oder „Abwickeln“ zweidimensional dargestellt werden. Zur Berechnung der Fläche genügen in diesen Fällen einfache geometrische Formeln. Allgemein gilt für Rotationskörper, dass ihre Mantelfläche durch Rotation eines Graphen einer Funktion um eine Koordinatenachse entsteht. Bei diesem Ansatz wird die Integralrechnung zur Berechnung der Fläche benötigt.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.