Mechanisch verzahnte Moleküle
Mechanisch verzahnte Moleküle (englisch Mechanically interlocked molecular architectures, MIMAs) sind Moleküle, die aufgrund ihrer Topologie miteinander verknüpft sind. Die Verbindungen verhalten sich wie Schlüssel an einem Schlüsselbund. Die Schlüssel sind nicht im direkten Kontakt mit der Schleife, aber sie können nicht getrennt werden, ohne die Schleife zu durchtrennen. Auf molekularer Ebene bedeutet das, dass kovalente Bindungen aufgebrochen werden müssten. Beispiele für mechanisch verzahnte Moleküle schließen Catenane, Rotaxane, molekulare Knoten (Knotane) und molekulare Borromäische Ringe ein. Arbeit auf diesem Gebiet wurde 2016 mit dem Nobelpreis in Chemie für Bernard L. Feringa, Jean-Pierre Sauvage, and J. Fraser Stoddart gewürdigt.
Die Synthese solcher mechanisch verzahnter Architekturen wurde durch die Kombination von supramolekularer Chemie mit traditioneller Synthese möglich, jedoch haben sie Eigenschaften, die sich von supramolekularen Assemblern und von kovalenten Molekülen unterscheiden. Der Begriff der „mechanischen Bindung“ beschreibt die Verbindung zwischen den Strukturen einer mechanisch verzahnten Architektur. Obwohl die Forschung sich mit den synthetisch hergestellten mechanisch verzahnten Architekturen befasst, kann man auch Beispiele in biologischen Systemen finden: Cytokine Knoten, Cyclotide, Lasso-Peptide wie Microin J25, die zu den Proteinen gehören, und weitere Peptide.
Statt von mechanischer Bindung wird auch der Begriff topologische Bindung verwendet und in diesem Zusammenhang von topologischer Isomerie und Chemischer Topologie gesprochen, ein Begriff der auf Edel Wasserman (1961) zurückgeht.