Multinomiale logistische Regression
In der Statistik ist die multinomiale logistische Regression, auch multinomiales Logit-Modell, multinomiale Logit-Regression (MNL), polytome logistische Regression, polychotome logistische Regression, Softmax-Regression oder Maximum-Entropie-Klassifikator genannt, ein regressionsanalytisches Verfahren. Sie „dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür.“ Die Antwortvariable (auch abhängige Variable, AV) ist dabei eine nominalskalierte Variable (Unterform der kategorialen Variable, bei der die Kategorien nicht in eine sinnvolle Reihenfolge zu bringen sind). Im Falle einer ordinalskalierten AV (ebenfalls kategorial, aber in Reihenfolge mit gleichmäßigen Abständen zwischen den Kategorien zu bringen) spricht man von einer geordneten (bzw. ordinalen) logistischen Regression. Bei gegebener verhältnis- oder intervallskalierter AV kann dagegen eine (Multiple) Lineare Regression gerechnet werden.