Napiersche Rechenstäbchen
Napiersche Rechenstäbchen (nach John Napier, der diese in seinem 1617 erschienenen Werk Rabdologiae seu numeratio per virgulas libri duo beschreibt) sind Rechenstäbchen, mit denen Multiplikationen und Divisionen durchgeführt werden können. Sie werden auch Nepersche Stäbchen oder Neperianische Rechenstäblein genannt. Das Arithmeum in Bonn, das weltweit größte Museum zu Rechenmaschinen, stellt diese Rechenstäbchen zum Multiplizieren vor. Um 1905 produzierte die Firma Merkur Verlag Remig Rees in Wehingen (Württemberg) dieses Rechenhilfsmittel unter dem Namen „Theutometer“ auf einzelnen Kartonstreifen, einsetzbar für bis zu 18 Stellen.
Die Stäbchen haben einen quadratischen Querschnitt. Auf jeder Längsseite eines Stäbchen ist spaltenweise eine Reihe des Einmaleins notiert. Beispielsweise stehen auf der rechts abgebildeten (Abb. 1) Seite eines Stäbchens die Vielfachen von 7, von 1×7 bis 9×7. Oben auf jeder Seite steht die jeweilige Grundzahl, im Beispiel also die 7.
Dabei ist jedes Zahlenfeld diagonal geteilt von links unten nach rechts oben. Im unteren rechten Dreieck steht die Einerstelle und im oberen linken Dreieck die Zehnerstelle des Produktes. Beispielsweise steht in der 4. Position des 7er-Stabes links oben 2 und rechts unten 8, entsprechend dem Produkt 4 × 7 = 28.
Die Stäbchen werden zur Multiplikation auf ein Tablett gelegt, an dessen linkem Rand die Zahlen 1 bis 9 untereinander aufgeführt sind. Die Stäbchen passen exakt in dieses Tablett hinein, so dass sie nicht vertikal verrutschen können.