Quantenlogik
Als Quantenlogik (englisch quantum logic) werden Versuche bezeichnet, ein logisches System zu formulieren, das den Prinzipien der Quantenmechanik gerecht wird.
Die Strukturen der Quantenphysik wirken paradox und sind teilweise schwer nachzuvollziehen. Fragestellungen wie die, ob Schrödingers Katze lebt, fordern das Verständnis heraus. Im Kontext der mathematischen Strukturen der Schrödingergleichung und der Heisenbergschen Unschärferelation wurde deshalb eine Logik gesucht, die Deutungen der Quantenmechanik wie dem Komplementaritätsprinzip oder dem Korrespondenzprinzip nachempfunden ist. Dazu musste die herkömmliche Logik modifiziert werden.
Es gibt im Wesentlichen vier verschiedene Ansätze zur Quantenlogik:
- John von Neumann und Garrett Birkhoff entdeckten als erste in den mathematischen Strukturen der Quantenphysik (Hilbertraum, Hamiltonoperator) eine von der bis dahin üblichen Booleschen Algebra abweichende so genannte orthomodulare Logik.
- Hans Reichenbach und andere entwickelten aus einer Wahrscheinlichkeitslogik eine dreiwertige Quantenlogik mit den Wahrheitswerten wahr, falsch und unbestimmt.
- Peter Mittelstaedt, Ernst-Walther Stachow und Carl Friedrich von Weizsäcker entwickelten die dialogische Logik zu einer zeitlichen Logik der Quantenprozesse um.
- Gudrun Kalmbach stellte die Orthomodulare Logik für Hilberträume H auf und Maria Pia Solèr zeigte, dass dieses Gesetz für H gilt.
Hilary Putnam nahm 1968 die Quantenlogik zum Anlass, die a-priori-Geltung logischer Gesetze insgesamt in Frage zu stellen, was eine Debatte um den Status logischer und algebraischer Gesetzmäßigkeiten auslöste.