Geodätische Kompaktifizierung
Im mathematischen Gebiet der Differentialgeometrie ist die geodätische Kompaktifizierung oder geometrische Kompaktifizierung eine Kompaktifizierung hyperbolischer Räume oder allgemein nichtpositiv gekrümmter Räume durch eine Sphäre im Unendlichen.
Diese Kompaktifizierung funktioniert auch für allgemeine Hadamard-Räume, allerdings muss der Rand im Unendlichen dann im Allgemeinen keine Sphäre sein. Aufgrund der Konstruktion der Randpunkte als (im Unendlichen liegende) Endpunkte von Geodäten wird dieser Rand im Unendlichen auch als sichtbarer Rand bzw. (falls es sich um eine Sphäre handelt) als sichtbare Sphäre (engl.: visibility sphere) bezeichnet.
Dieser Artikel behandelt den Rand im Unendlichen negativ gekrümmter, einfach zusammenhängender, Riemannscher Mannigfaltigkeiten. Die Definition lässt sich auch auf Gromov-hyperbolische Räume und insbesondere auf hyperbolische Gruppen übertragen, siehe Gromov-hyperbolischer Raum#Gromov-Rand und Hyperbolische Gruppe#Rand im Unendlichen.