Satz von Wedderburn

Der Satz von Wedderburn (nach Joseph Wedderburn) gehört zum mathematischen Teilgebiet der Algebra. Er besagt, dass jeder endliche Schiefkörper ein Körper ist, das heißt: Wenn ein Schiefkörper nur endlich viele Elemente enthält, folgt daraus bereits die Kommutativität der Multiplikation. Mit anderen Worten: Ein Schiefkörper, der kein Körper ist (in dem die Multiplikation also nicht kommutativ ist), enthält unendlich viele Elemente.

Neben Wedderburn (der mehrere Beweise gab, zuerst 1905) haben auch andere Mathematiker unterschiedliche Beweise für den Satz geliefert, zum Beispiel Leonard Dickson, Emil Artin, Ernst Witt (der Beweis umfasst eine Seite), Hans Zassenhaus und Israel Herstein.

Es gibt noch andere bekannte Sätze, die manchmal auch einfach Satz von Wedderburn genannt werden, wie sein Satz zur Klassifikation halbeinfacher Algebren, verallgemeinert im Satz von Artin-Wedderburn. Im Englischen wird Wedderburns Satz über endliche Schiefkörper deshalb auch Kleiner Satz von Wedderburn genannt.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.