Statistische Versuchsplanung
Die statistische Versuchsplanung, kurz SVP (englisch design of experiments, DoE), umfasst alle statistischen Verfahren, die vor Versuchsbeginn angewendet werden sollten. Dazu gehören:
- die Bestimmung des minimal erforderlichen Versuchsumfanges zur Einhaltung von Genauigkeitsvorgaben, siehe Trennschärfe eines Tests
- die Anordnung von Versuchspunkten innerhalb des Faktorraums anhand eines Optimalitätskriteriums (I-, D-, A-, G-optimale Versuchspläne)
- Methoden zum Umgang mit Störgrößen wie Blöcke, Randomisierung, lateinische Quadrate
- faktorielle Pläne, vor allem fraktionierte faktorielle Pläne
- sequentielle Versuchsplanung und Auswertung (Sequentialanalyse); hier wechseln Datenerfassung und -auswertung ab, bis eine vorgegebene Genauigkeit erreicht wird
Da Versuche Ressourcen benötigen (Personal, Zeit, Geräte usw.), sieht sich der Versuchsverantwortliche in einem Zwiespalt zwischen einerseits der Genauigkeit und Zuverlässigkeit seiner erwarteten Ergebnisse und andererseits dem dazu notwendigen Aufwand. Der Begriff „Versuch“ schließt neben materiellen Versuchen die Rechnersimulationen mit ein. Mit der statistischen Versuchsplanung wird mit möglichst wenigen Versuchen (Einzelexperimenten) der Wirkzusammenhang zwischen Einflussfaktoren (= unabhängige Variablen) und Zielgrößen (= abhängige Variable) möglichst genau ermittelt. Wichtiger Bestandteil der statistischen Versuchsplanung ist die Bestimmung des Versuchsumfanges in Abhängigkeit von Genauigkeitsvorgaben wie etwa der Risiken von statistischen Tests und der minimal interessierenden Mindestdifferenz vom Nullhypothesenwert.