Totale Differenzierbarkeit
Die totale Differenzierbarkeit ist im mathematischen Teilgebiet der Analysis eine grundlegende Eigenschaft von Funktionen zwischen endlichdimensionalen Vektorräumen über . Mittels dieser Eigenschaft lassen sich viele weitere für die Analysis bedeutsame Aussagen über Funktionen zeigen. (Diese Aussagen sind nicht gültig bei Verwendung der schwächeren partiellen Differenzierbarkeit, welche der üblichen Definition der Differenzierbarkeit einer reellen Funktion als Konvergenz der Differenzenquotienten formal ähnlicher ist.) Viele weitere Begriffe der Analysis bauen dann auf der totalen Differenzierbarkeit auf. In der neueren mathematischen Literatur spricht man meist statt totaler Differenzierbarkeit einfach von Differenzierbarkeit.
Die totale Differenzierbarkeit einer Funktion in einem Punkt bedeutet, dass diese sich dort lokal durch eine lineare Abbildung approximieren (annähern) lässt, während die partielle Differenzierbarkeit (in alle Richtungen) nur die lokale Approximierbarkeit durch Geraden in allen Koordinatenachsenrichtungen, nicht jedoch als eine einzige lineare Abbildung fordert.
Während die Ableitung einer Funktion an einer Stelle üblicherweise als eine Zahl aufgefasst wird, fasst man im höherdimensionalen Fall die Ableitung als ebenjene lokale lineare Approximation auf. Diese lineare Abbildung kann durch eine Matrix dargestellt werden, die Ableitungsmatrix, Jacobi-Matrix oder Fundamentalmatrix genannt wird (im eindimensionalen Fall ergibt sich dadurch wiederum eine 1×1-Matrix, d. h. eine einzige Zahl). Im eindimensionalen Fall stimmen der klassische reelle, der totale und der partielle Differenzierbarkeitsbegriff überein.
Der Begriff der Fréchet-Differenzierbarkeit verallgemeinert die totale Differenzierbarkeit auf unendlichdimensionale Räume, er übernimmt die Eigenschaft der Ableitung als lokale, lineare Approximation.