Algebraische Struktur

Der Begriff der algebraischen Struktur (oder universellen Algebra, allgemeinen Algebra oder nur Algebra) ist ein Grundbegriff und zentraler Untersuchungsgegenstand des mathematischen Teilgebietes der universellen Algebra. Eine algebraische Struktur ist gewöhnlich eine Menge, versehen mit Verknüpfungen auf dieser Menge. Eine Vielzahl der in der abstrakten Algebra untersuchten Strukturen wie Gruppen, Ringe oder Körper sind spezielle algebraische Strukturen.

Wichtige algebraische Strukturen
Algebraische Axiome der Gruppe Ring kommutativer
Ring
Schiefkörper
(Divisionsring)
Körper
Kommutativgesetz bzgl. der Addition
(additiv-kommutative Gruppe)
JaJaJaJa
Distributivgesetz JaJaJaJa
Kommutativgesetz bzgl. der Multiplikation
(multiplikativ-kommutative Gruppe)
NeinJaNeinJa
Multiplikativ Inverses existiert
für jedes Element außer 0.
NeinNeinJaJa

Algebraische Strukturen können auch aus mehreren Mengen zusammen mit Verknüpfungen auf und zwischen diesen Mengen bestehen. Sie werden dann heterogene Algebren genannt, prominentestes Beispiel sind Vektorräume (mit Vektoren und Skalaren).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.