Vektorgradient
Der Gradient eines Vektorfeldes oder kurz Vektorgradient (von lateinisch gradiens ‚schreitend‘) fasst das Gefälle oder den Anstieg der Komponenten eines Vektorfeldes zu einem mathematischen Objekt zusammen. Während mit dem Gradient eines Skalarfeldes das Gefälle oder der Anstieg in einer bestimmten Richtung (sog. Richtungsableitung) als Skalar angegeben wird, stellt die Richtungsableitung mit dem Vektorgradient einen Vektor dar.
Ein anschauliches Beispiel ist das Vektorfeld der Bewegung der Partikel eines Körpers. Der Deformationsgradient transformiert die Strecke von einem Partikel zu einem benachbarten Partikel des Körpers im undeformierten Zustand – das ist die vorgegebene Richtung h – in die entsprechende Strecke im deformierten Zustand, was die Richtungsableitung in Richtung h ist, siehe Bild. Die Strecke h kann bei der Deformation gedreht und gestreckt werden. Die Richtungsableitung mit maximalem Wert ist hier diejenige Richtung, in der der Körper die größte Dehnung erfährt; in dieser Richtung benachbarte Partikel entfernen sich im Zuge der Verformung am weitesten voneinander, siehe auch #Verformungen und die #Beispiele.
Der Gradient eines Vektorfeldes entsteht aus dem Vektorfeld durch Anwendung des Gradientenoperators grad, der eine Verallgemeinerung der Ableitung in der mehrdimensionalen Analysis ist. Zur besseren Abgrenzung zwischen Operator und Resultat seiner Anwendung bezeichnen manche Quellen:353:112 den Gradient vektorieller Feldgrößen als Vektorgradient.
Der Gradient hat tensorielle Eigenschaften:421: der Gradient eines Skalarfeldes (Tensorfeld nullter Stufe) führt auf ein Gradientenvektorfeld, das ein Tensorfeld erster Stufe ist. Entsprechend ist der Vektorgradient ein Tensorfeld zweiter Stufe; das Ergebnis lässt sich bezüglich einer Orthonormalbasis als Matrix schreiben. Die Komponenten des Vektorgradienten sind die kovarianten Ableitungen der Komponenten des Vektorfeldes in einem Punkt; bei den Basisvektoren sind dies die Christoffelsymbole.
Der Gradient wird zusammen mit anderen Differentialoperatoren wie Divergenz und Rotation in der Tensoranalysis untersucht.