Vanadate

In chemistry, a vanadate is an anionic coordination complex of vanadium. Often vanadate refers to oxoanions of vanadium, most of which exist in its highest oxidation state of +5. The complexes [V(CN)6]3− and [V2Cl9]3− are referred to as hexacyanovanadate(III) and nonachlorodivanadate(III), respectively.

A simple vanadate ion is the tetrahedral orthovanadate anion, VO3−4 (which is also called vanadate(V)), which is present in e.g. sodium orthovanadate and in solutions of V2O5 in strong base (pH > 13[1]). Conventionally this ion is represented with a single double bond, however this is a resonance form as the ion is a regular tetrahedron with four equivalent oxygen atoms.

Additionally a range of polyoxovanadate ions exist which include discrete ions and "infinite" polymeric ions.[2] There are also vanadates, such as rhodium vanadate, RhVO4, which has a statistical rutile structure where the Rh3+ and V5+ ions randomly occupy the Ti4+ positions in the rutile lattice,[3] that do not contain a lattice of cations and balancing vanadate anions but are mixed oxides.

In chemical nomenclature when vanadate forms part of the name, it indicates that the compound contains an anion with a central vanadium atom, e.g. ammonium hexafluorovanadate is a common name for the compound [NH4]3[VF6] with the IUPAC name of ammonium hexafluoridovanadate(III).

Examples of oxovanadate ions

Some examples of discrete ions are

  • VO3−4 "orthovanadate", tetrahedral.[2]
  • V2O4−7 "pyrovanadate", corner-shared VO4 tetrahedra, similar to the dichromate ion[2]
  • V3O3−9, cyclic with corner-shared VO4 tetrahedra[4]
  • V4O4−12, cyclic with corner-shared VO4 tetrahedra[5]
  • V5O3−14, corner shared VO4 tetrahedra[6]
  • V6O6−18, ring.[7]
  • V10O6−28 "decavanadate", edge- and corner-shared VO6 octahedra[2]
  • V12O4−32
  • V13O3−34, fused VO6 octahedra [8]
  • V18O12−42[9]

Some examples of polymeric "infinite" ions are

  • [VO
    3
    ]n
    n
    in e.g. NaVO3, sodium metavanadate[2]
  • [V
    3
    O
    8
    ]n
    n
    in CaV6O16[10]
metavanadate chains
V5O14
decavanadate ion

In these ions vanadium exhibits tetrahedral, square pyramidal and octahedral coordination. In this respect vanadium shows similarities to tungstate and molybdate, whereas chromium however has a more limited range of ions.

Aqueous solutions

Dissolution of vanadium pentoxide in strongly basic aqueous solution gives the colourless VO3−4 ion. On acidification, this solution's colour gradually darkens through orange to red at around pH 7. Brown hydrated V2O5 precipitates around pH 2, redissolving to form a light yellow solution containing the [VO2(H2O)4]+ ion. The number and identity of the oxyanions that exist between pH 13 and 2 depend on pH as well as concentration. For example, protonation of vanadate initiates a series of condensations to produce polyoxovanadate ions:[2]

  • pH 9–12: HVO2−4, V2O4−7
  • pH 4–9: H2VO4, V4O4−12, HV10O5−28
  • pH 2–4: H3VO4, H2V10O4−28

Pharmacological properties

Vanadate is a potent inhibitor of certain plasma membrane ATPases, such as Na+/K+-ATPase and Ca2+-ATPase (PMCA). Acting as a transition-state analog of phosphate, vanadate undergoes nucleophillic attack by water during phosphoryl transfer, essentially "trapping" P-type ATPases in their phosphorylated E2 state. [11][12] It also inhibits skeletal muscle actomyosin MgATPase activity[13] and calcium activated force generation by actomyosin in the intact skeletal muscle contractile apparatus.[14] However, it does not inhibit other ATPases, such as SERCA (sarco/endoplasmic reticulum Ca2+-ATPase) or mitochondrial ATPase.[15][16][17]

References

  1. Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5
  2. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  3. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  4. Hamilton E. E.; Fanwick P.E.; Wilker J.J. (2002). "The Elusive Vanadate (V3O9)3−: Isolation, Crystal Structure, and Nonaqueous Solution Behavior". J. Am. Chem. Soc. 124 (1): 78–82. doi:10.1021/ja010820r. PMID 11772064.
  5. G.-Y. Yang, D.-W. Gao, Y. Chen, J.-Q. Xu, Q.-X. Zeng, H.-R. Sun, Z.-W. Pei, Q. Su, Y. Xing, Y.-H. Ling and H.-Q. Jia (1998). "[Ni(C10H8N2)3]2[V4O12]·11H2O". Acta Crystallographica C. 54 (5): 616–618. Bibcode:1998AcCrC..54..616Y. doi:10.1107/S0108270197018751.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. V. W. Day; Walter G. Klemperer; O. M. Yaghi (1989). "A new structure type in polyoxoanion chemistry: synthesis and structure of the V
    5
    O3−
    14
    anion". J. Am. Chem. Soc. 111 (12): 4518. doi:10.1021/ja00194a068.
  7. Guang-Chuan Ou.; Long Jiang; Xiao-Long Feng; Tong-Bu Lu (2009). "Vanadium polyoxoanion-bridged macrocyclic metal complexes: from one-dimensional to three-dimensional structures". Dalton Transactions. 1 (1): 71–76. doi:10.1039/B810802A. PMID 19081973. S2CID 35209358.
  8. Hou D.; Hagen K.D.; Hill C.L. (1992). "Tridecavanadate, [V13O34]3−, a new high-potential isopolyvanadate". J. Am. Chem. Soc. 114 (14): 5864. doi:10.1021/ja00040a061.
  9. Müller A.; Sessoli R.; Krickemeyer E.; Bögge H.; Meyer J.; Gatteschi D.; Pardi L.; Westphal J.; Hovemeier K.; Rohlfing R.; Döring J; Hellweg F.; Beugholt C.; Schmidtmann M. (1997). "Polyoxovanadates: High-Nuclearity Spin Clusters with Interesting Host–Guest Systems and Different Electron Populations. Synthesis, Spin Organization, Magnetochemistry, and Spectroscopic Studies". Inorg. Chem. 36 (23): 5239. doi:10.1021/ic9703641.
  10. Jouanneau, S.; Verbaere, A.; Guyomard, D. (2003). "On a new calcium vanadate: synthesis, structure and Li insertion behaviour". Journal of Solid State Chemistry. 172 (1): 116–122. Bibcode:2003JSSCh.172..116J. doi:10.1016/S0022-4596(02)00164-0.
  11. Kühlbrandt, Werner (April 2004). "Biology, structure and mechanism of P-type ATPases". Nature Reviews. Molecular Cell Biology. 5 (4): 282–295. doi:10.1038/nrm1354. ISSN 1471-0072. PMID 15071553. S2CID 24927167.
  12. Davies, Douglas R.; Hol, Wim G.J. (2004-11-19). "The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes". FEBS Letters. 577 (3): 315–321. doi:10.1016/j.febslet.2004.10.022. ISSN 0014-5793. PMID 15556602.
  13. Goodno, C.C.; Taylor, E.W. (1982). "Inhibition of actomyosin ATPase by vanadate". Proceedings of the National Academy of Sciences USA. 79 (1): 21–25. Bibcode:1982PNAS...79...21G. doi:10.1073/pnas.79.1.21. PMC 345653. PMID 6459580.
  14. Wilson, G.J.; Shull, S.E.; Cooke, R. (1995). "Inhibition of muscle force by vanadate". Biophysical Journal. 68 (1): 216–226. Bibcode:1995BpJ....68..216W. doi:10.1016/S0006-3495(95)80177-3. PMC 1281679. PMID 7711244.
  15. Luo D.; Nakazawa M.; Yoshida Y.; Cai J.; Imai S. (2000). "Effects of three different Ca2+ pump ATPase inhibitors on evoked contractions in rabbit aorta and activities of Ca2+ pump ATPases in porcine aorta". General Pharmacology: The Vascular System. 34 (3): 211–220. doi:10.1016/S0306-3623(00)00064-1. PMID 11120383.
  16. Bowman B.J.; Slayman C.W. (1979). "The Effects of Vanadate on the Plasma Membrane ATPase of Neurospora crassa". Journal of Biological Chemistry. 254 (8): 2928–2934. doi:10.1016/S0021-9258(17)30163-1. PMID 155060.
  17. Aureliano, Manuel; Crans, Debbie C. (2009). "Decavanadate (V
    10
    O6−
    28
    ) and oxovanadates: Oxometalates with many biological activities"
    . Journal of Inorganic Biochemistry. 103 (4): 536–546. doi:10.1016/j.jinorgbio.2008.11.010. ISSN 0162-0134. PMID 19110314.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.