Isotopes of europium
| |||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Eu) | |||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring europium (63Eu) is composed of two isotopes, 151Eu and 153Eu, with 153Eu being the more abundant (52.2% natural abundance). While 153Eu is observationally stable, 151Eu was found in 2007 to be unstable and undergo alpha decay;[4][5] its measured half-life of 4.6 × 1018 years corresponds to 1 alpha decay per two minutes per kilogram of natural europium, so for practical purposes it can be considered stable. Besides the natural radioisotope 151Eu, artificial radioisotopes from 130Eu to 170Eu have been made, with the most stable being 150Eu with a half-life of 36.9 years, 152Eu with a half-life of 13.517 years, 154Eu with a half-life of 8.592 years, and 155Eu with a half-life of 4.742 years. All the others have half-lives shorter than 100 days, with the majority shorter than 3 minutes.
This element also has 27 metastable isomers, with the most stable being 150mEu (12.8 hours), 152m1Eu (9.3116 hours) and 152m5Eu (96 minutes). The primary decay mode for isotopes lighter than 153Eu is electron capture to samarium isotopes, and the primary mode for heavier isotopes is beta minus decay to gadolinium isotopes. 152Eu and 154Eu can decay either way, as can 150mEu (meta state only).
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da)[6] [n 2][n 3] |
Half-life[1] [n 4][n 5] |
Decay mode[1] [n 6] |
Daughter isotope [n 7][n 8] |
Spin and parity[1] [n 9][n 5] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 5] | Normal proportion[1] | Range of variation | |||||||||||||||||
130Eu | 63 | 67 | 129.96402(58)# | 1.0(4) ms | p | 129Sm | (1+) | ||||||||||||
131Eu | 63 | 68 | 130.95763(43)# | 17.8(19) ms | p (89%) | 130Sm | 3/2+ | ||||||||||||
β+ (?%) | 131Sm | ||||||||||||||||||
β+, p (?%) | 130Pm | ||||||||||||||||||
134Eu | 63 | 71 | 133.94654(32)# | 0.5(2) s | β+ | 134Sm | |||||||||||||
β+, p (?%) | 133Pm | ||||||||||||||||||
135Eu | 63 | 72 | 134.94187(21)# | 1.5(2) s | β+ | 135Sm | 5/2+# | ||||||||||||
136Eu | 63 | 73 | 135.93962(21)# | 3.3(3) s | β+ (99.91%) | 136Sm | 6+# | ||||||||||||
β+, p (0.09%) | 135Pm | ||||||||||||||||||
136mEu[n 10] | 100(100)# keV | 3.8(3) s | β+ (99.91%) | 136Sm | 1+# | ||||||||||||||
β+, p (0.09%) | 135Pm | ||||||||||||||||||
137Eu | 63 | 74 | 136.9354307(47) | 8.4(5) s | β+ | 137Sm | 5/2+# | ||||||||||||
138Eu | 63 | 75 | 137.933709(30) | 5# s | 2−# | ||||||||||||||
138mEu[n 10] | 100(50)# keV | 12.1(6) s | β+ | 138Sm | 7−# | ||||||||||||||
139Eu | 63 | 76 | 138.929792(14) | 17.9(6) s | β+ | 139Sm | (11/2)− | ||||||||||||
139mEu | 148.3(3) keV | 10(2) μs | IT | 139Eu | (7/2+) | ||||||||||||||
140Eu | 63 | 77 | 139.928088(55) | 1.51(2) s | β+ (95.1%) | 140Sm | 1+ | ||||||||||||
EC (4.9%) | |||||||||||||||||||
140m1Eu | 210(14) keV | 125(2) ms | IT (>99%) | 140Eu | (5−) | ||||||||||||||
β+ (>1%) | 140Sm | ||||||||||||||||||
140m2Eu | 669(14) keV | 299.8(21) ns | IT | 140Eu | (8+) | ||||||||||||||
141Eu | 63 | 78 | 140.924932(14) | 40.7(7) s | β+ | 141Sm | 5/2+ | ||||||||||||
141mEu | 96.45(7) keV | 2.7(3) s | IT (86%) | 141Eu | 11/2− | ||||||||||||||
β+ (14%) | 141Sm | ||||||||||||||||||
142Eu | 63 | 79 | 141.923447(32) | 2.36(10) s | β+ (89.9%) | 142Sm | 1+ | ||||||||||||
EC (11.1%) | 142Sm | ||||||||||||||||||
142mEu | 450(30) keV | 1.223(8) min | β+ | 142Sm | 8− | ||||||||||||||
143Eu | 63 | 80 | 142.920299(12) | 2.59(2) min | β+ | 143Sm | 5/2+ | ||||||||||||
143mEu | 389.51(4) keV | 50.0(5) μs | IT | 143Eu | 11/2− | ||||||||||||||
144Eu | 63 | 81 | 143.918819(12) | 10.2(1) s | β+ | 144Sm | 1+ | ||||||||||||
144mEu | 1127.6(6) keV | 1.0(1) μs | IT | 144Eu | 8− | ||||||||||||||
145Eu | 63 | 82 | 144.9162727(33) | 5.93(4) d | β+ | 145Sm | 5/2+ | ||||||||||||
145mEu | 716.0(3) keV | 490(30) ns | IT | 145Eu | 11/2− | ||||||||||||||
146Eu | 63 | 83 | 145.9172109(65) | 4.61(3) d | β+ | 146Sm | 4− | ||||||||||||
146mEu | 666.33(11) keV | 235(3) μs | IT | 146Eu | 9+ | ||||||||||||||
147Eu | 63 | 84 | 146.9167524(28) | 24.1(6) d | β+ | 147Sm | 5/2+ | ||||||||||||
α (0.0022%) | 143Pm | ||||||||||||||||||
147mEu | 625.27(5) keV | 765(15) ns | IT | 147Eu | 11/2− | ||||||||||||||
148Eu | 63 | 85 | 147.918091(11) | 54.5(5) d | β+ | 148Sm | 5− | ||||||||||||
α (9.4×10−7%) | 144Pm | ||||||||||||||||||
148mEu | 720.4(3) keV | 162(8) ns | IT | 148Eu | 9+ | ||||||||||||||
149Eu | 63 | 86 | 148.9179369(42) | 93.1(4) d | EC | 149Sm | 5/2+ | ||||||||||||
149mEu | 496.386(2) keV | 2.45(5) μs | IT | 149Eu | 11/2− | ||||||||||||||
150Eu | 63 | 87 | 149.9197071(67) | 36.9(9) y | β+ | 150Sm | 5− | ||||||||||||
150mEu | 41.7(10) keV | 12.8(1) h | β− (89%) | 150Gd | 0− | ||||||||||||||
β+ (11%) | 150Sm | ||||||||||||||||||
IT (<5×10−8%)[7] | 150Eu | ||||||||||||||||||
151Eu[n 11][n 12] | 63 | 88 | 150.9198566(13) | 4.6(12)×1018 y | α | 147Pm | 5/2+ | 0.4781(6) | |||||||||||
151mEu | 196.245(10) keV | 58.9(5) μs | IT | 151Eu | 11/2− | ||||||||||||||
152Eu | 63 | 89 | 151.9217510(13) | 13.517(6) y | β+ (72.08%) | 152Sm | 3− | ||||||||||||
β− (27.92%) | 152Gd | ||||||||||||||||||
152m1Eu | 45.5998(4) keV | 9.3116(13) h | β− (73%) | 152Gd | 0− | ||||||||||||||
β+ (27%) | 152Sm | ||||||||||||||||||
152m2Eu | 65.2969(4) keV | 940(80) ns | IT | 152Eu | 1− | ||||||||||||||
152m3Eu | 78.2331(4) keV | 165(10) ns | IT | 152Eu | 1+ | ||||||||||||||
152m4Eu | 89.8496(4) keV | 384(10) ns | IT | 152Eu | 4+ | ||||||||||||||
152m5Eu | 147.86(10) keV | 95.8(4) min | IT | 152Eu | 8− | ||||||||||||||
153Eu[n 11] | 63 | 90 | 152.9212368(13) | Observationally Stable[n 13][8][9] | 5/2+ | 0.5219(6) | |||||||||||||
153mEu | 1771.0(4) keV | 475(10) ns | IT | 153Eu | 19/2− | ||||||||||||||
154Eu[n 11] | 63 | 91 | 153.9229857(13) | 8.592(3) y | β− (99.98%) | 154Gd | 3− | ||||||||||||
EC (0.02%) | 154Sm | ||||||||||||||||||
154m1Eu | 68.1702(4) keV | 2.2(1) μs | IT | 154Eu | 2+ | ||||||||||||||
154m2Eu | 145.3(3) keV | 46.3(4) min | IT | 154Eu | (8−) | ||||||||||||||
155Eu[n 11] | 63 | 92 | 154.9228998(13) | 4.742(8) y | β− | 155Gd | 5/2+ | ||||||||||||
156Eu[n 11] | 63 | 93 | 155.9247630(38) | 15.19(8) d | β− | 156Gd | 0+ | ||||||||||||
157Eu | 63 | 94 | 156.9254326(45) | 15.18(3) h | β− | 157Gd | 5/2+ | ||||||||||||
158Eu | 63 | 95 | 157.9277822(22) | 45.9(2) min | β− | 158Gd | 1− | ||||||||||||
159Eu | 63 | 96 | 158.9290995(46) | 18.1(1) min | β− | 159Gd | 5/2+ | ||||||||||||
160Eu | 63 | 97 | 159.93183698(97) | 42.6(5) s | β− | 160Gd | (5−) | ||||||||||||
160mEu | 93.0(12) keV | 30.8(5) s | IT | 160Eu | (1−) | ||||||||||||||
161Eu | 63 | 98 | 160.933664(11) | 26.2(23) s | β− | 161Gd | 5/2+# | ||||||||||||
162Eu | 63 | 99 | 161.9369583(14) | ~10 s | β− | 162Gd | 1+# | ||||||||||||
162mEu | 158.0(17) keV | 15.0(5) s | IT | 162Eu | (6+) | ||||||||||||||
163Eu | 63 | 100 | 162.93926551(97) | 7.7(4) s | β− | 163Gd | 5/2+# | ||||||||||||
163mEu | 964.5(5) keV | 911(24) ns | IT | 163Eu | (13/2−) | ||||||||||||||
164Eu | 63 | 101 | 163.9428529(22) | 4.16(19) s | β− | 164Gd | 3−# | ||||||||||||
165Eu | 63 | 102 | 164.9455401(56) | 2.163+0.139 −0.120 s[10] |
β− | 165Gd | 5/2+# | ||||||||||||
166Eu | 63 | 103 | 165.94981(11)# | 1.277+0.100 −0.145 s[10] |
β− (99.37%) | 166Gd | 0−# | ||||||||||||
β−, n (0.63%) | 165Gd | ||||||||||||||||||
167Eu | 63 | 104 | 166.95301(43)# | 852+76 −54 ms[10] |
β− (98.05%) | 167Gd | 5/2+# | ||||||||||||
β−, n (1.95%) | 166Gd | ||||||||||||||||||
168Eu | 63 | 105 | 167.95786(43)# | 440+48 −47 ms[10] |
β− (96.05%) | 168Gd | 6−# | ||||||||||||
β−, n (3.95%) | 167Gd | ||||||||||||||||||
169Eu | 63 | 106 | 168.96172(54)# | 389+92 −88 ms[10] |
β− (85.38%) | 169Gd | 5/2+# | ||||||||||||
β−, n (14.62%) | 168Gd | ||||||||||||||||||
170Eu | 63 | 107 | 169.96687(54)# | 197+74 −71 ms[10] |
β− (>76%) | 170Gd | |||||||||||||
β−, n (<24%) | 169Gd | ||||||||||||||||||
This table header & footer: |
- ^ mEu – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ Bold half-life – nearly stable, half-life longer than age of universe.
- ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
α: Alpha decay β+: Positron emission EC: Electron capture β−: Beta decay IT: Isomeric transition
p: Proton emission - ^ Bold italics symbol as daughter – Daughter product is nearly stable.
- ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ a b Order of ground state and isomer is uncertain.
- ^ a b c d e Fission product
- ^ Primordial radionuclide
- ^ Believed to undergo α decay to 149Pm with a half-life over 5.5×1017 years
Europium-155
Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
---|---|---|---|---|
(a) | (%)[a 2] | (keV) | ||
155Eu | 4.74 | 0.0803[a 3] | 252 | βγ |
85Kr | 10.73 | 0.2180[a 4] | 687 | βγ |
113mCd | 13.9 | 0.0008[a 3] | 316 | β |
90Sr | 28.91 | 4.505 | 2826[a 5] | β |
137Cs | 30.04 | 6.337 | 1176 | βγ |
121mSn | 43.9 | 0.00005 | 390 | βγ |
151Sm | 94.6 | 0.5314[a 3] | 77 | β |
|
Europium-155 is a fission product with a half-life of 4.742 years and has a maximum decay energy of 252 keV. Because of its position on the high-mass end of the yield curve, it has a low fission product yield, about 1 to 2% that of the most abundant fission products.
155Eu's large neutron capture cross section means that most of the small amount produced is destroyed in the course of the nuclear fuel's burnup. Yield, decay energy, and half-life are all far less than that of 137Cs and 90Sr, so 155Eu is not a significant contributor to nuclear waste.
Some 155Eu is also produced by successive neutron captures on 153Eu and 154Eu, whose direct fission yield is extremely small as its mass chain stops at 154Sm. However, the high cross sections, and even higher for 155 than 154, mean that both 155Eu and 154Eu are destroyed faster than they are produced. See the table below for numeric details on this process.
Isotope | Half-life | Relative yield (fission) | Thermal neutron | Resonance integral |
---|---|---|---|---|
Eu-153 | Stable | 5 | 350 | 1500 |
Eu-154 | 8.592 years | ~0 | 1500 | 1600 |
Eu-155 | 4.742 years | 1 | 3900 | 16000 |
See also
Daughter products other than europium
References
- ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Europium". CIAAW. 1995.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Belli, P.; et al. (2007). "Search for α decay of natural europium". Nuclear Physics A. 789 (1–4): 15–29. Bibcode:2007NuPhA.789...15B. doi:10.1016/j.nuclphysa.2007.03.001.
- ^ Casali, N.; Nagorny, S. S.; Orio, F.; Pattavina, L.; et al. (2014). "Discovery of the 151Eu α decay". Journal of Physics G: Nuclear and Particle Physics. 41 (7): 075101. arXiv:1311.2834. Bibcode:2014JPhG...41g5101C. doi:10.1088/0954-3899/41/7/075101. S2CID 116920467.
{{cite journal}}
: CS1 maint: article number as page number (link) - ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3) 030003. doi:10.1088/1674-1137/abddaf.
- ^ "Adopted Levels for 150Eu" (PDF). NNDC Chart of Nuclides.
- ^ Danevich, F. A.; Andreotti, E.; Hult, M.; Marissens, G.; Tretyak, V. I.; Yuksel, A. (2012). "Search for α decay of 151Eu to the first excited level of 147Pm using underground γ-ray spectrometry". European Physical Journal A. 48 (157): 157. arXiv:1301.3465. Bibcode:2012EPJA...48..157D. doi:10.1140/epja/i2012-12157-7. S2CID 118657922.
- ^ Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098.
- ^ a b c d e f Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253.