Isotopes of tin
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Sn) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tin (50Sn) is the element with the greatest number of naturally abundant isotopes, 10. Seven, 114-120Sn, are theoretically stable, while the remaining three, 112Sn, 122Sn, and 124Sn, are potentially radioactive (to double beta decay, but have not been observed to decay (observationally stable). This is generally attributed to the fact that 50 is a "magic number" of protons. In addition, 32 unstable tin isotopes are known, including tin-100 (100Sn) and tin-132 (132Sn), which are both "doubly magic". The longest-lived of these is tin-126 (126Sn), with a half-life about 230,000 years; with all others less than a year and the majority under 20 minutes.
The number of known metastable states is very large, including a long series of low-lying states in odd isotopes from 117 on, which gives two nuclides with a longer life than any ground-state radioisotope other than 126: 121mSn, half-life 43.9 years, and 119mSn, half-life 293.1 days.
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da)[4] [n 2][n 3] |
Half-life[1] [n 4] |
Decay mode[1] [n 5] |
Daughter isotope [n 6] |
Spin and parity[1] [n 7][n 4] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | Normal proportion[1] | Range of variation | |||||||||||||||||
98Sn[5] | 50 | 48 | 0+ | ||||||||||||||||
99Sn[n 8] | 50 | 49 | 98.94850(63)# | 24(4) ms | β+ (95%) | 99In | 9/2+# | ||||||||||||
β+, p (5%) | 98Cd | ||||||||||||||||||
100Sn[n 9] | 50 | 50 | 99.93865(26) | 1.18(8) s | β+ (>83%) | 100In | 0+ | ||||||||||||
β+, p (<17%) | 99Cd | ||||||||||||||||||
101Sn | 50 | 51 | 100.93526(32) | 2.22(5) s | β+ | 101In | (7/2+) | ||||||||||||
β+, p? | 100Cd | ||||||||||||||||||
102Sn | 50 | 52 | 101.93029(11) | 3.8(2) s | β+ | 102In | 0+ | ||||||||||||
102mSn | 2017(2) keV | 367(8) ns | IT | 102Sn | (6+) | ||||||||||||||
103Sn | 50 | 53 | 102.92797(11)# | 7.0(2) s | β+ (98.8%) | 103In | 5/2+# | ||||||||||||
β+, p (1.2%) | 102Cd | ||||||||||||||||||
104Sn | 50 | 54 | 103.923105(6) | 20.8(5) s | β+ | 104In | 0+ | ||||||||||||
105Sn | 50 | 55 | 104.921268(4) | 32.7(5) s | β+ | 105In | (5/2+) | ||||||||||||
β+, p (0.011%) | 104Cd | ||||||||||||||||||
106Sn | 50 | 56 | 105.916957(5) | 1.92(8) min | β+ | 106In | 0+ | ||||||||||||
107Sn | 50 | 57 | 106.915714(6) | 2.90(5) min | β+ | 107In | (5/2+) | ||||||||||||
108Sn | 50 | 58 | 107.911894(6) | 10.30(8) min | β+ | 108In | 0+ | ||||||||||||
109Sn | 50 | 59 | 108.911293(9) | 18.1(2) min | β+ | 109In | 5/2+ | ||||||||||||
110Sn | 50 | 60 | 109.907845(15) | 4.154(4) h | EC | 110In | 0+ | ||||||||||||
111Sn | 50 | 61 | 110.907741(6) | 35.3(6) min | β+ | 111In | 7/2+ | ||||||||||||
111mSn | 254.71(4) keV | 12.5(10) μs | IT | 111Sn | 1/2+ | ||||||||||||||
112Sn | 50 | 62 | 111.9048249(3) | Observationally Stable[n 10] | 0+ | 0.0097(1) | |||||||||||||
113Sn | 50 | 63 | 112.9051759(17) | 115.08(4) d | β+ | 113In | 1/2+ | ||||||||||||
113mSn | 77.389(19) keV | 21.4(4) min | IT (91.1%) | 113Sn | 7/2+ | ||||||||||||||
β+ (8.9%) | 113In | ||||||||||||||||||
114Sn | 50 | 64 | 113.90278013(3) | Stable | 0+ | 0.0066(1) | |||||||||||||
114mSn | 3087.37(7) keV | 733(14) ns | IT | 114Sn | 7− | ||||||||||||||
115Sn[n 11] | 50 | 65 | 114.903344695(16) | Stable | 1/2+ | 0.0034(1) | |||||||||||||
115m1Sn | 612.81(4) keV | 3.26(8) μs | IT | 115Sn | 7/2+ | ||||||||||||||
115m2Sn | 713.64(12) keV | 159(1) μs | IT | 115Sn | 11/2− | ||||||||||||||
116Sn | 50 | 66 | 115.90174283(10) | Stable | 0+ | 0.1454(9) | |||||||||||||
116m1Sn | 2365.975(21) keV | 348(19) ns | IT | 116Sn | 5− | ||||||||||||||
116m2Sn | 3547.16(17) keV | 833(30) ns | IT | 116Sn | 10+ | ||||||||||||||
117Sn[n 11] | 50 | 67 | 116.90295404(52) | Stable | 1/2+ | 0.0768(7) | |||||||||||||
117m1Sn[n 11] | 314.58(4) keV | 13.939(24) d | IT | 117Sn | 11/2− | ||||||||||||||
117m2Sn | 2406.4(4) keV | 1.75(7) μs | IT | 117Sn | (19/2+) | ||||||||||||||
118Sn[n 11] | 50 | 68 | 117.90160663(54) | Stable | 0+ | 0.2422(9) | |||||||||||||
118m1Sn | 2574.91(4) keV | 230(10) ns | IT | 118Sn | 7− | ||||||||||||||
118m2Sn | 3108.06(22) keV | 2.52(6) μs | IT | 118Sn | (10+) | ||||||||||||||
119Sn[n 11] | 50 | 69 | 118.90331127(78) | Stable | 1/2+ | 0.0859(4) | |||||||||||||
119m1Sn[n 11] | 89.531(13) keV | 293.1(7) d | IT | 119Sn | 11/2− | ||||||||||||||
119m2Sn | 2127.0(10) keV | 9.6(12) μs | IT | 119Sn | (19/2+) | ||||||||||||||
119m3Sn | 2369.0(3) keV | 96(9) ns | IT | 119Sn | 23/2+ | ||||||||||||||
120Sn[n 11] | 50 | 70 | 119.90220256(99) | Stable | 0+ | 0.3258(9) | |||||||||||||
120m1Sn | 2481.63(6) keV | 11.8(5) μs | IT | 120Sn | 7− | ||||||||||||||
120m2Sn | 2902.22(22) keV | 6.26(11) μs | IT | 120Sn | 10+ | ||||||||||||||
121Sn[n 11] | 50 | 71 | 120.9042435(11) | 27.03(4) h | β− | 121Sb | 3/2+ | ||||||||||||
121m1Sn[n 11] | 6.31(6) keV | 43.9(5) y | IT (77.6%) | 121Sn | 11/2− | ||||||||||||||
β− (22.4%) | 121Sb | ||||||||||||||||||
121m2Sn | 1998.68(13) keV | 5.3(5) μs | IT | 121Sn | 19/2+ | ||||||||||||||
121m3Sn | 2222.0(2) keV | 520(50) ns | IT | 121Sn | 23/2+ | ||||||||||||||
121m4Sn | 2833.9(2) keV | 167(25) ns | IT | 121Sn | 27/2− | ||||||||||||||
122Sn[n 11] | 50 | 72 | 121.9034455(26) | Observationally Stable[n 12] | 0+ | 0.0463(3) | |||||||||||||
122m1Sn | 2409.03(4) keV | 7.5(9) μs | IT | 122Sn | 7− | ||||||||||||||
122m2Sn | 2765.5(3) keV | 62(3) μs | IT | 122Sn | 10+ | ||||||||||||||
122m3Sn | 4721.2(3) keV | 139(9) ns | IT | 122Sn | 15− | ||||||||||||||
123Sn[n 11] | 50 | 73 | 122.9057271(27) | 129.2(4) d | β− | 123Sb | 11/2− | ||||||||||||
123m1Sn | 24.6(4) keV | 40.06(1) min | β− | 123Sb | 3/2+ | ||||||||||||||
123m2Sn | 1944.90(12) keV | 7.4(26) μs | IT | 123Sn | 19/2+ | ||||||||||||||
123m3Sn | 2152.66(19) keV | 6 μs | IT | 123Sn | 23/2+ | ||||||||||||||
123m4Sn | 2712.47(21) keV | 34 μs | IT | 123Sn | 27/2− | ||||||||||||||
124Sn[n 11] | 50 | 74 | 123.9052796(14) | Observationally Stable[n 13] | 0+ | 0.0579(5) | |||||||||||||
124m1Sn | 2204.620(23) keV | 270(60) ns | IT | 124Sn | 5- | ||||||||||||||
124m2Sn | 2324.96(4) keV | 3.1(5) μs | IT | 124Sn | 7− | ||||||||||||||
124m3Sn | 2656.6(3) keV | 51(3) μs | IT | 124Sn | 10+ | ||||||||||||||
124m4Sn | 4552.4(3) keV | 260(25) ns | IT | 124Sn | 15− | ||||||||||||||
125Sn[n 11] | 50 | 75 | 124.9077894(14) | 9.634(15) d | β− | 125Sb | 11/2− | ||||||||||||
125m1Sn | 27.50(14) keV | 9.77(25) min | β− | 125Sb | 3/2+ | ||||||||||||||
125m2Sn | 1892.8(3) keV | 6.2(2) μs | IT | 125Sn | 19/2+ | ||||||||||||||
125m3Sn | 2059.5(4) keV | 650(60) ns | IT | 125Sn | 23/2+ | ||||||||||||||
125m4Sn | 2623.5(5) keV | 230(17) ns | IT | 125Sn | 27/2− | ||||||||||||||
126Sn[n 14] | 50 | 76 | 125.907658(11) | 2.30(14)×105 y | β− | 126m1Sb[6] | 0+ | < 10−14[7] | |||||||||||
126m1Sn | 2218.99(8) keV | 6.1(7) μs | IT | 126Sn | 7− | ||||||||||||||
126m2Sn | 2564.5(5) keV | 7.6(3) μs | IT | 126Sn | 10+ | ||||||||||||||
126m3Sn | 4347.4(4) keV | 114(2) ns | IT | 126Sn | 15− | ||||||||||||||
127Sn | 50 | 77 | 126.9103917(99) | 2.10(4) h | β− | 127Sb | 11/2− | ||||||||||||
127m1Sn | 5.07(6) keV | 4.13(3) min | β− | 127Sb | 3/2+ | ||||||||||||||
127m2Sn | 1826.67(16) keV | 4.52(15) μs | IT | 127Sn | 19/2+ | ||||||||||||||
127m3Sn | 1930.97(17) keV | 1.26(15) μs | IT | 127Sn | (23/2+) | ||||||||||||||
127m4Sn | 2552.4(10) keV | 250(30) ns | IT | 127Sn | (27/2−) | ||||||||||||||
128Sn | 50 | 78 | 127.910508(19) | 59.07(14) min | β− | 128Sb | 0+ | ||||||||||||
128m1Sn | 2091.50(11) keV | 6.5(5) s | IT | 128Sn | 7− | ||||||||||||||
128m2Sn | 2491.91(17) keV | 2.91(14) μs | IT | 128Sn | 10+ | ||||||||||||||
128m3Sn | 4099.5(4) keV | 220(30) ns | IT | 128Sn | (15−) | ||||||||||||||
129Sn | 50 | 79 | 128.913482(19) | 2.23(4) min | β− | 129Sb | 3/2+ | ||||||||||||
129m1Sn | 35.15(5) keV | 6.9(1) min | β− | 129Sb | 11/2− | ||||||||||||||
129m2Sn | 1761.6(10) keV | 3.49(11) μs | IT | 129Sn | (19/2+) | ||||||||||||||
129m3Sn | 1802.6(10) keV | 2.22(13) μs | IT | 129Sn | 23/2+ | ||||||||||||||
129m4Sn | 2552.9(11) keV | 221(18) ns | IT | 129Sn | (27/2−) | ||||||||||||||
130Sn | 50 | 80 | 129.9139745(20) | 3.72(7) min | β− | 130Sb | 0+ | ||||||||||||
130m1Sn | 1946.88(10) keV | 1.7(1) min | β− | 130Sb | 7− | ||||||||||||||
130m2Sn | 2434.79(12) keV | 1.501(17) μs | IT | 130Sn | (10+) | ||||||||||||||
131Sn | 50 | 81 | 130.917053(4) | 56.0(5) s | β− | 131Sb | 3/2+ | ||||||||||||
131m1Sn | 65.1(3) keV | 58.4(5) s | β− | 131Sb | 11/2− | ||||||||||||||
IT? | 131Sn | ||||||||||||||||||
131m2Sn | 4670.0(4) keV | 316(5) ns | IT | 131Sn | (23/2−) | ||||||||||||||
132Sn | 50 | 82 | 131.9178239(21) | 39.7(8) s | β− | 132Sb | 0+ | ||||||||||||
132mSn | 4848.52(20) keV | 2.080(16) μs | IT | 132Sn | 8+ | ||||||||||||||
133Sn | 50 | 83 | 132.9239138(20) | 1.37(7) s | β− (99.97%) | 133Sb | 7/2− | ||||||||||||
β−n (.0294%) | 132Sb | ||||||||||||||||||
134Sn | 50 | 84 | 133.928680(3) | 0.93(8) s | β− (83%) | 134Sb | 0+ | ||||||||||||
β−n (17%) | 133Sb | ||||||||||||||||||
134mSn | 1247.4(5) keV | 87(8) ns | IT | 134Sn | 6+ | ||||||||||||||
135Sn | 50 | 85 | 134.934909(3) | 515(5) ms | β− (79%) | 135Sb | 7/2−# | ||||||||||||
β−n (21%) | 134Sb | ||||||||||||||||||
β−2n? | 133Sb | ||||||||||||||||||
136Sn | 50 | 86 | 135.93970(22)# | 355(18) ms | β− (72%) | 136Sb | 0+ | ||||||||||||
β−n (28%) | 135Sb | ||||||||||||||||||
β−2n? | 134Sb | ||||||||||||||||||
137Sn | 50 | 87 | 136.94616(32)# | 249(15) ms | β− (52%) | 137Sb | 5/2−# | ||||||||||||
β−n (48%) | 136Sb | ||||||||||||||||||
β−2n? | 135Sb | ||||||||||||||||||
138Sn | 50 | 88 | 137.95114(43)# | 148(9) ms | β− (64%) | 138Sb | 0+ | ||||||||||||
β−n (36%) | 137Sb | ||||||||||||||||||
β−2n? | 136Sb | ||||||||||||||||||
138mSn | 1344(2) keV | 210(45) ns | IT | 138Sn | (6+) | ||||||||||||||
139Sn | 50 | 89 | 138.95780(43)# | 120(38) ms | β− | 139Sb | 5/2−# | ||||||||||||
β−n? | 138Sb | ||||||||||||||||||
β−2n? | 137Sb | ||||||||||||||||||
140Sn | 50 | 90 | 139.96297(32)# | 50# ms [>550 ns] |
β−? | 140Sb | 0+ | ||||||||||||
β−n? | 139Sb | ||||||||||||||||||
β−2n? | 138Sb | ||||||||||||||||||
This table header & footer: |
- ^ mSn – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
EC: Electron capture
IT: Isomeric transition n: Neutron emission p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ Heaviest known nuclide with more protons than neutrons
- ^ Heaviest nuclide with equal numbers of protons and neutrons with no observed α decay
- ^ Believed to decay by β+β+ to 112Cd
- ^ a b c d e f g h i j k l m Fission product
- ^ Believed to undergo β−β− decay to 122Te
- ^ Believed to undergo β−β− decay to 124Te with a half-life over 1×1017 years
- ^ Long-lived fission product
Tin-117m
Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).[8]
Tin-121m
Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
---|---|---|---|---|
(a) | (%)[a 2] | (keV) | ||
155Eu | 4.74 | 0.0803[a 3] | 252 | βγ |
85Kr | 10.73 | 0.2180[a 4] | 687 | βγ |
113mCd | 13.9 | 0.0008[a 3] | 316 | β |
90Sr | 28.91 | 4.505 | 2826[a 5] | β |
137Cs | 30.04 | 6.337 | 1176 | βγ |
121mSn | 43.9 | 0.00005 | 390 | βγ |
151Sm | 94.6 | 0.5314[a 3] | 77 | β |
|
Tin-121m (121mSn) is a nuclear isomer of tin with a half-life of 43.9 years, making it technically a medium-lived fission product.
In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce it at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.[9]
Tin-126
Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
---|---|---|---|---|
(Ma) | (%)[a 2] | (keV) | ||
99Tc | 0.211 | 6.1385 | 294 | β |
126Sn | 0.23 | 0.1084 | 4050[a 3] | βγ |
79Se | 0.33 | 0.0447 | 151 | β |
135Cs | 1.33 | 6.9110[a 4] | 269 | β |
93Zr | 1.61 | 5.4575 | 91 | βγ |
107Pd | 6.5 | 1.2499 | 33 | β |
129I | 16.1 | 0.8410 | 194 | βγ |
Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products. While tin-126's half-life of 230,000 years means a relatively low specific activity, its short-lived decay products, two isomers of antimony-126, emit a cascade of hard gamma radiation - at least 3 photons above 400 keV per decay - before reaching stable tellurium-126, making it a possible external exposure hazard, which the other long-lived fission products are not by comparison.
Tin-126 is in the middle of the mass range for fission products, so its yield is fairly low (but still dominates that for the element tin). Fission of the common fuels such as 235U and 239Pu into unequal halves is preferred, especially with thermal neutrons, as used in almost all current nuclear power plants.
Thermal | Fast | 14 MeV | |
---|---|---|---|
232Th | not fissile | 0.0481 ± 0.0077 | 0.87 ± 0.20 |
233U | 0.224 ± 0.018 | 0.278 ± 0.022 | 1.92 ± 0.31 |
235U | 0.056 ± 0.004 | 0.0137 ± 0.001 | 1.70 ± 0.14 |
238U | not fissile | 0.054 ± 0.004 | 1.31 ± 0.21 |
239Pu | 0.199 ± 0.016 | 0.26 ± 0.02 | 2.02 ± 0.22 |
241Pu | 0.082 ± 0.019 | 0.22 ± 0.03 | ? |
See also
Daughter products other than tin
References
- ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Tin". CIAAW. 1983.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3) 030003. doi:10.1088/1674-1137/abddaf.
- ^ Suzuki, H.; Fukuda, N.; Takeda, H.; et al. (2025). "Discovery of 98Sn produced by the projectile fragmentation of a 345-MeV/nucleon 124Xe beam". Progress of Theoretical and Experimental Physics (ptaf051). doi:10.1093/ptep/ptaf051.
- ^ ENSDF analysis available at National Nuclear Data Center. "NuDat 3.0 database". Brookhaven National Laboratory.
- ^ Shen, Hongtao; Jiang, Shan; He, Ming; Dong, Kejun; Li, Chaoli; He, Guozhu; Wu, Shaolei; Gong, Jie; Lu, Liyan; Li, Shizhuo; Zhang, Dawei; Shi, Guozhu; Huang, Chuntang; Wu, Shaoyong (February 2011). "Study on measurement of fission product nuclide 126Sn by AMS" (PDF). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 269 (3): 392–395. doi:10.1016/j.nimb.2010.11.059.
- ^ "Procedure for Use of Synovetin OA" (PDF). nrc.gov.
- ^ a b M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)