Der (66,26,10)-Blockplan ist ein spezieller symmetrischer Blockplan. Um ihn konstruieren zu können, musste dieses kombinatorische Problem gelöst werden: eine leere 66 × 66 - Matrix wurde so mit Einsen gefüllt, dass jede Zeile der Matrix genau 26 Einsen enthält und je zwei beliebige Zeilen genau 10 Einsen in der gleichen Spalte besitzen (nicht mehr und nicht weniger). Das klingt relativ einfach, ist aber nicht trivial zu lösen. Es gibt nur gewisse Kombinationen von Parametern (wie hier v = 66, k = 26, λ = 10), für die eine solche Konstruktion überhaupt machbar ist. In dieser Übersicht sind die kleinsten solcher (v,k,λ) aufgeführt.
Eigenschaften
Dieser symmetrische Blockplan hat die Parameter v = 66, k = 26, λ = 10 und damit folgende Eigenschaften:
- Er besteht aus 66 Blöcken und 66 Punkten.
- Jeder Block enthält genau 26 Punkte.
- Je 2 Blöcke schneiden sich in genau 10 Punkten.
- Jeder Punkt liegt auf genau 26 Blöcken.
- Je 2 Punkte sind durch genau 10 Blöcke verbunden.
Existenz und Charakterisierung
Es existieren mindestens 588 nichtisomorphe 2-(66,26,10) - Blockpläne. Drei dieser Lösungen sind:
- Lösung 1 mit der Signatur 55·65, 11·75. Sie enthält 110 Ovale der Ordnung 3.
- Lösung 2 (dual zur Lösung 3) mit der Signatur 25·3, 5·5, 25·6, 10·10, 1·100. Sie enthält 85 Ovale der Ordnung 3.
- Lösung 3 (dual zur Lösung 2) mit der Signatur 5·5, 25·9, 5·10, 25·15, 6·25. Sie enthält 60 Ovale der Ordnung 3.
Liste der Blöcke
Hier sind alle Blöcke dieses Blockplans aufgelistet; zum Verständnis dieser Liste siehe diese Veranschaulichung
- Lösung 1
1 22 23 24 25 26 32 33 34 35 36 42 43 44 45 46 47 48 49 50 51 62 63 64 65 66 2 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 47 48 49 50 51 57 58 59 60 61 3 12 13 14 15 16 27 28 29 30 31 47 48 49 50 51 52 53 54 55 56 62 63 64 65 66 4 12 13 14 15 16 17 18 19 20 21 42 43 44 45 46 47 48 49 50 51 57 58 59 60 61 5 17 18 19 20 21 22 23 24 25 26 37 38 39 40 41 47 48 49 50 51 52 53 54 55 56 6 17 18 19 20 21 27 28 29 30 31 37 38 39 40 41 42 43 44 45 46 62 63 64 65 66 7 12 13 14 15 16 22 23 24 25 26 37 38 39 40 41 57 58 59 60 61 62 63 64 65 66 8 17 18 19 20 21 32 33 34 35 36 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 9 22 23 24 25 26 27 28 29 30 31 42 43 44 45 46 52 53 54 55 56 57 58 59 60 61 10 12 13 14 15 16 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 52 53 54 55 56 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 4 7 10 11 12 19 20 24 25 28 31 33 36 39 40 43 46 49 50 54 55 58 61 63 66 3 4 7 10 11 13 20 21 25 26 27 29 32 34 40 41 42 44 50 51 55 56 57 59 62 64 3 4 7 10 11 14 17 21 22 26 28 30 33 35 37 41 43 45 47 51 52 56 58 60 63 65 3 4 7 10 11 15 17 18 22 23 29 31 34 36 37 38 44 46 47 48 52 53 59 61 64 66 3 4 7 10 11 16 18 19 23 24 27 30 32 35 38 39 42 45 48 49 53 54 57 60 62 65 4 5 6 8 11 13 16 17 24 25 29 30 33 36 38 41 44 45 48 51 54 55 59 60 63 66 4 5 6 8 11 12 14 18 25 26 30 31 32 34 37 39 45 46 47 49 55 56 60 61 62 64 4 5 6 8 11 13 15 19 22 26 27 31 33 35 38 40 42 46 48 50 52 56 57 61 63 65 4 5 6 8 11 14 16 20 22 23 27 28 34 36 39 41 42 43 49 51 52 53 57 58 64 66 4 5 6 8 11 12 15 21 23 24 28 29 32 35 37 40 43 44 47 50 53 54 58 59 62 65 1 5 7 9 11 13 16 18 21 22 29 30 34 35 39 40 43 46 49 50 53 56 59 60 63 66 1 5 7 9 11 12 14 17 19 23 30 31 35 36 40 41 42 44 50 51 52 54 60 61 62 64 1 5 7 9 11 13 15 18 20 24 27 31 32 36 37 41 43 45 47 51 53 55 57 61 63 65 1 5 7 9 11 14 16 19 21 25 27 28 32 33 37 38 44 46 47 48 54 56 57 58 64 66 1 5 7 9 11 12 15 17 20 26 28 29 33 34 38 39 42 45 48 49 52 55 58 59 62 65 2 3 6 9 11 14 15 18 21 23 26 27 34 35 39 40 44 45 48 51 54 55 58 61 63 66 2 3 6 9 11 15 16 17 19 22 24 28 35 36 40 41 45 46 47 49 55 56 57 59 62 64 2 3 6 9 11 12 16 18 20 23 25 29 32 36 37 41 42 46 48 50 52 56 58 60 63 65 2 3 6 9 11 12 13 19 21 24 26 30 32 33 37 38 42 43 49 51 52 53 59 61 64 66 2 3 6 9 11 13 14 17 20 22 25 31 33 34 38 39 43 44 47 50 53 54 57 60 62 65 1 2 8 10 11 14 15 19 20 23 26 28 31 32 38 41 44 45 49 50 53 56 59 60 63 66 1 2 8 10 11 15 16 20 21 22 24 27 29 33 37 39 45 46 50 51 52 54 60 61 62 64 1 2 8 10 11 12 16 17 21 23 25 28 30 34 38 40 42 46 47 51 53 55 57 61 63 65 1 2 8 10 11 12 13 17 18 24 26 29 31 35 39 41 42 43 47 48 54 56 57 58 64 66 1 2 8 10 11 13 14 18 19 22 25 27 30 36 37 40 43 44 48 49 52 55 58 59 62 65 2 5 6 7 10 13 16 19 20 23 26 28 31 34 35 37 43 46 48 51 54 55 59 60 64 65 2 5 6 7 10 12 14 20 21 22 24 27 29 35 36 38 42 44 47 49 55 56 60 61 65 66 2 5 6 7 10 13 15 17 21 23 25 28 30 32 36 39 43 45 48 50 52 56 57 61 62 66 2 5 6 7 10 14 16 17 18 24 26 29 31 32 33 40 44 46 49 51 52 53 57 58 62 63 2 5 6 7 10 12 15 18 19 22 25 27 30 33 34 41 42 45 47 50 53 54 58 59 63 64 1 4 6 9 10 14 15 18 21 24 25 28 31 33 36 39 40 42 48 51 53 56 59 60 64 65 1 4 6 9 10 15 16 17 19 25 26 27 29 32 34 40 41 43 47 49 52 54 60 61 65 66 1 4 6 9 10 12 16 18 20 22 26 28 30 33 35 37 41 44 48 50 53 55 57 61 62 66 1 4 6 9 10 12 13 19 21 22 23 29 31 34 36 37 38 45 49 51 54 56 57 58 62 63 1 4 6 9 10 13 14 17 20 23 24 27 30 32 35 38 39 46 47 50 52 55 58 59 63 64 1 2 3 4 5 13 16 19 20 23 26 29 30 33 36 39 40 44 45 47 53 56 58 61 64 65 1 2 3 4 5 12 14 20 21 22 24 30 31 32 34 40 41 45 46 48 52 54 57 59 65 66 1 2 3 4 5 13 15 17 21 23 25 27 31 33 35 37 41 42 46 49 53 55 58 60 62 66 1 2 3 4 5 14 16 17 18 24 26 27 28 34 36 37 38 42 43 50 54 56 59 61 62 63 1 2 3 4 5 12 15 18 19 22 25 28 29 32 35 38 39 43 44 51 52 55 57 60 63 64 3 5 8 9 10 13 16 18 21 24 25 28 31 34 35 38 41 44 45 49 50 52 58 61 64 65 3 5 8 9 10 12 14 17 19 25 26 27 29 35 36 37 39 45 46 50 51 53 57 59 65 66 3 5 8 9 10 13 15 18 20 22 26 28 30 32 36 38 40 42 46 47 51 54 58 60 62 66 3 5 8 9 10 14 16 19 21 22 23 29 31 32 33 39 41 42 43 47 48 55 59 61 62 63 3 5 8 9 10 12 15 17 20 23 24 27 30 33 34 37 40 43 44 48 49 56 57 60 63 64 2 4 7 8 9 14 15 18 21 23 26 29 30 33 36 38 41 43 46 49 50 54 55 57 64 65 2 4 7 8 9 15 16 17 19 22 24 30 31 32 34 37 39 42 44 50 51 55 56 58 65 66 2 4 7 8 9 12 16 18 20 23 25 27 31 33 35 38 40 43 45 47 51 52 56 59 62 66 2 4 7 8 9 12 13 19 21 24 26 27 28 34 36 39 41 44 46 47 48 52 53 60 62 63 2 4 7 8 9 13 14 17 20 22 25 28 29 32 35 37 40 42 45 48 49 53 54 61 63 64 1 3 6 7 8 14 15 19 20 24 25 29 30 34 35 38 41 43 46 48 51 53 56 58 61 62 1 3 6 7 8 15 16 20 21 25 26 30 31 35 36 37 39 42 44 47 49 52 54 57 59 63 1 3 6 7 8 12 16 17 21 22 26 27 31 32 36 38 40 43 45 48 50 53 55 58 60 64 1 3 6 7 8 12 13 17 18 22 23 27 28 32 33 39 41 44 46 49 51 54 56 59 61 65 1 3 6 7 8 13 14 18 19 23 24 28 29 33 34 37 40 42 45 47 50 52 55 57 60 66
- Lösung 2
1 22 23 24 25 26 32 33 34 35 36 42 43 44 45 46 47 48 49 50 51 62 63 64 65 66 2 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 47 48 49 50 51 57 58 59 60 61 3 12 13 14 15 16 27 28 29 30 31 47 48 49 50 51 52 53 54 55 56 62 63 64 65 66 4 12 13 14 15 16 17 18 19 20 21 42 43 44 45 46 47 48 49 50 51 57 58 59 60 61 5 17 18 19 20 21 22 23 24 25 26 37 38 39 40 41 47 48 49 50 51 52 53 54 55 56 6 17 18 19 20 21 27 28 29 30 31 37 38 39 40 41 42 43 44 45 46 62 63 64 65 66 7 12 13 14 15 16 22 23 24 25 26 37 38 39 40 41 57 58 59 60 61 62 63 64 65 66 8 17 18 19 20 21 32 33 34 35 36 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 9 22 23 24 25 26 27 28 29 30 31 42 43 44 45 46 52 53 54 55 56 57 58 59 60 61 10 12 13 14 15 16 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 52 53 54 55 56 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 4 7 10 11 12 18 20 24 26 29 31 33 35 37 38 44 45 49 50 52 53 58 59 63 66 3 4 7 10 11 13 19 21 22 25 27 30 34 36 38 39 45 46 50 51 53 54 59 60 62 64 3 4 7 10 11 14 17 20 23 26 28 31 32 35 39 40 42 46 47 51 54 55 60 61 63 65 3 4 7 10 11 15 18 21 22 24 27 29 33 36 40 41 42 43 47 48 55 56 57 61 64 66 3 4 7 10 11 16 17 19 23 25 28 30 32 34 37 41 43 44 48 49 52 56 57 58 62 65 4 5 6 8 11 13 15 17 23 25 29 31 34 36 38 39 42 43 49 50 54 55 57 58 63 66 4 5 6 8 11 14 16 18 24 26 27 30 32 35 39 40 43 44 50 51 55 56 58 59 62 64 4 5 6 8 11 12 15 19 22 25 28 31 33 36 40 41 44 45 47 51 52 56 59 60 63 65 4 5 6 8 11 13 16 20 23 26 27 29 32 34 37 41 45 46 47 48 52 53 60 61 64 66 4 5 6 8 11 12 14 21 22 24 28 30 33 35 37 38 42 46 48 49 53 54 57 61 62 65 1 5 7 9 11 14 16 18 20 22 28 30 34 36 37 38 43 44 47 48 54 55 59 60 63 66 1 5 7 9 11 12 15 19 21 23 29 31 32 35 38 39 44 45 48 49 55 56 60 61 62 64 1 5 7 9 11 13 16 17 20 24 27 30 33 36 39 40 45 46 49 50 52 56 57 61 63 65 1 5 7 9 11 12 14 18 21 25 28 31 32 34 40 41 42 46 50 51 52 53 57 58 64 66 1 5 7 9 11 13 15 17 19 26 27 29 33 35 37 41 42 43 47 51 53 54 58 59 62 65 2 3 6 9 11 14 16 19 21 23 25 27 33 35 39 40 42 43 48 49 52 53 59 60 63 66 2 3 6 9 11 12 15 17 20 24 26 28 34 36 40 41 43 44 49 50 53 54 60 61 62 64 2 3 6 9 11 13 16 18 21 22 25 29 32 35 37 41 44 45 50 51 54 55 57 61 63 65 2 3 6 9 11 12 14 17 19 23 26 30 33 36 37 38 45 46 47 51 55 56 57 58 64 66 2 3 6 9 11 13 15 18 20 22 24 31 32 34 38 39 42 46 47 48 52 56 58 59 62 65 1 2 8 10 11 13 15 19 21 24 26 28 30 32 39 40 44 45 47 48 53 54 57 58 63 66 1 2 8 10 11 14 16 17 20 22 25 29 31 33 40 41 45 46 48 49 54 55 58 59 62 64 1 2 8 10 11 12 15 18 21 23 26 27 30 34 37 41 42 46 49 50 55 56 59 60 63 65 1 2 8 10 11 13 16 17 19 22 24 28 31 35 37 38 42 43 50 51 52 56 60 61 64 66 1 2 8 10 11 12 14 18 20 23 25 27 29 36 38 39 43 44 47 51 52 53 57 61 62 65 2 5 6 7 10 14 15 17 19 24 25 27 31 32 36 37 44 46 48 50 53 55 59 61 65 66 2 5 6 7 10 15 16 18 20 25 26 27 28 32 33 38 42 45 49 51 54 56 57 60 62 66 2 5 6 7 10 12 16 19 21 22 26 28 29 33 34 39 43 46 47 50 52 55 58 61 62 63 2 5 6 7 10 12 13 17 20 22 23 29 30 34 35 40 42 44 48 51 53 56 57 59 63 64 2 5 6 7 10 13 14 18 21 23 24 30 31 35 36 41 43 45 47 49 52 54 58 60 64 65 1 4 6 9 10 12 16 19 20 22 24 29 30 32 36 39 41 42 49 51 53 55 58 60 65 66 1 4 6 9 10 12 13 20 21 23 25 30 31 32 33 37 40 43 47 50 54 56 59 61 62 66 1 4 6 9 10 13 14 17 21 24 26 27 31 33 34 38 41 44 48 51 52 55 57 60 62 63 1 4 6 9 10 14 15 17 18 22 25 27 28 34 35 37 39 45 47 49 53 56 58 61 63 64 1 4 6 9 10 15 16 18 19 23 26 28 29 35 36 38 40 46 48 50 52 54 57 59 64 65 1 2 3 4 5 12 16 17 21 24 25 27 29 34 35 38 40 44 46 47 54 56 58 60 65 66 1 2 3 4 5 12 13 17 18 25 26 28 30 35 36 39 41 42 45 48 52 55 59 61 62 66 1 2 3 4 5 13 14 18 19 22 26 29 31 32 36 37 40 43 46 49 53 56 57 60 62 63 1 2 3 4 5 14 15 19 20 22 23 27 30 32 33 38 41 42 44 50 52 54 58 61 63 64 1 2 3 4 5 15 16 20 21 23 24 28 31 33 34 37 39 43 45 51 53 55 57 59 64 65 3 5 8 9 10 14 15 17 21 22 26 29 30 32 34 38 40 43 45 49 51 52 59 61 65 66 3 5 8 9 10 15 16 17 18 22 23 30 31 33 35 39 41 44 46 47 50 53 57 60 62 66 3 5 8 9 10 12 16 18 19 23 24 27 31 34 36 37 40 42 45 48 51 54 58 61 62 63 3 5 8 9 10 12 13 19 20 24 25 27 28 32 35 38 41 43 46 47 49 55 57 59 63 64 3 5 8 9 10 13 14 20 21 25 26 28 29 33 36 37 39 42 44 48 50 56 58 60 64 65 2 4 7 8 9 12 14 19 20 22 26 27 31 34 35 39 41 43 45 48 50 54 56 57 65 66 2 4 7 8 9 13 15 20 21 22 23 27 28 35 36 37 40 44 46 49 51 52 55 58 62 66 2 4 7 8 9 14 16 17 21 23 24 28 29 32 36 38 41 42 45 47 50 53 56 59 62 63 2 4 7 8 9 12 15 17 18 24 25 29 30 32 33 37 39 43 46 48 51 52 54 60 63 64 2 4 7 8 9 13 16 18 19 25 26 30 31 33 34 38 40 42 44 47 49 53 55 61 64 65 1 3 6 7 8 14 15 19 20 24 25 29 30 34 35 37 40 42 45 47 50 52 55 57 60 62 1 3 6 7 8 15 16 20 21 25 26 30 31 35 36 38 41 43 46 48 51 53 56 58 61 63 1 3 6 7 8 12 16 17 21 22 26 27 31 32 36 37 39 42 44 47 49 52 54 57 59 64 1 3 6 7 8 12 13 17 18 22 23 27 28 32 33 38 40 43 45 48 50 53 55 58 60 65 1 3 6 7 8 13 14 18 19 23 24 28 29 33 34 39 41 44 46 49 51 54 56 59 61 66
- Lösung 3
1 22 23 24 25 26 32 33 34 35 36 42 43 44 45 46 47 48 49 50 51 62 63 64 65 66 2 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 47 48 49 50 51 57 58 59 60 61 3 12 13 14 15 16 27 28 29 30 31 47 48 49 50 51 52 53 54 55 56 62 63 64 65 66 4 12 13 14 15 16 17 18 19 20 21 42 43 44 45 46 47 48 49 50 51 57 58 59 60 61 5 17 18 19 20 21 22 23 24 25 26 37 38 39 40 41 47 48 49 50 51 52 53 54 55 56 6 17 18 19 20 21 27 28 29 30 31 37 38 39 40 41 42 43 44 45 46 62 63 64 65 66 7 12 13 14 15 16 22 23 24 25 26 37 38 39 40 41 57 58 59 60 61 62 63 64 65 66 8 17 18 19 20 21 32 33 34 35 36 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 9 22 23 24 25 26 27 28 29 30 31 42 43 44 45 46 52 53 54 55 56 57 58 59 60 61 10 12 13 14 15 16 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 52 53 54 55 56 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 4 7 10 11 12 19 21 23 25 28 30 34 36 39 40 42 43 47 48 54 55 57 60 64 65 3 4 7 10 11 13 17 20 24 26 29 31 32 35 40 41 43 44 48 49 55 56 58 61 65 66 3 4 7 10 11 14 18 21 22 25 27 30 33 36 37 41 44 45 49 50 52 56 57 59 62 66 3 4 7 10 11 15 17 19 23 26 28 31 32 34 37 38 45 46 50 51 52 53 58 60 62 63 3 4 7 10 11 16 18 20 22 24 27 29 33 35 38 39 42 46 47 51 53 54 59 61 63 64 4 5 6 8 11 14 16 17 24 26 28 30 33 35 37 40 44 45 47 48 52 53 59 60 64 65 4 5 6 8 11 12 15 18 22 25 29 31 34 36 38 41 45 46 48 49 53 54 60 61 65 66 4 5 6 8 11 13 16 19 23 26 27 30 32 35 37 39 42 46 49 50 54 55 57 61 62 66 4 5 6 8 11 12 14 20 22 24 28 31 33 36 38 40 42 43 50 51 55 56 57 58 62 63 4 5 6 8 11 13 15 21 23 25 27 29 32 34 39 41 43 44 47 51 52 56 58 59 63 64 1 5 7 9 11 13 15 19 21 22 29 31 33 35 39 40 42 45 49 50 52 53 57 58 64 65 1 5 7 9 11 14 16 17 20 23 27 30 34 36 40 41 43 46 50 51 53 54 58 59 65 66 1 5 7 9 11 12 15 18 21 24 28 31 32 35 37 41 42 44 47 51 54 55 59 60 62 66 1 5 7 9 11 13 16 17 19 25 27 29 33 36 37 38 43 45 47 48 55 56 60 61 62 63 1 5 7 9 11 12 14 18 20 26 28 30 32 34 38 39 44 46 48 49 52 56 57 61 63 64 2 3 6 9 11 13 15 18 20 24 26 27 34 36 37 38 44 45 47 50 54 55 57 58 64 65 2 3 6 9 11 14 16 19 21 22 25 28 32 35 38 39 45 46 48 51 55 56 58 59 65 66 2 3 6 9 11 12 15 17 20 23 26 29 33 36 39 40 42 46 47 49 52 56 59 60 62 66 2 3 6 9 11 13 16 18 21 22 24 30 32 34 40 41 42 43 48 50 52 53 60 61 62 63 2 3 6 9 11 12 14 17 19 23 25 31 33 35 37 41 43 44 49 51 53 54 57 61 63 64 1 2 8 10 11 14 16 18 20 23 25 29 31 32 37 38 42 43 49 50 52 55 59 60 64 65 1 2 8 10 11 12 15 19 21 24 26 27 30 33 38 39 43 44 50 51 53 56 60 61 65 66 1 2 8 10 11 13 16 17 20 22 25 28 31 34 39 40 44 45 47 51 52 54 57 61 62 66 1 2 8 10 11 12 14 18 21 23 26 27 29 35 40 41 45 46 47 48 53 55 57 58 62 63 1 2 8 10 11 13 15 17 19 22 24 28 30 36 37 41 42 46 48 49 54 56 58 59 63 64 2 5 6 7 10 12 16 20 21 22 26 29 30 34 35 37 43 45 49 51 54 56 58 60 62 64 2 5 6 7 10 12 13 17 21 22 23 30 31 35 36 38 44 46 47 50 52 55 59 61 63 65 2 5 6 7 10 13 14 17 18 23 24 27 31 32 36 39 42 45 48 51 53 56 57 60 64 66 2 5 6 7 10 14 15 18 19 24 25 27 28 32 33 40 43 46 47 49 52 54 58 61 62 65 2 5 6 7 10 15 16 19 20 25 26 28 29 33 34 41 42 44 48 50 53 55 57 59 63 66 1 4 6 9 10 14 15 17 21 25 26 27 31 34 35 38 40 42 48 50 54 56 59 61 62 64 1 4 6 9 10 15 16 17 18 22 26 27 28 35 36 39 41 43 49 51 52 55 57 60 63 65 1 4 6 9 10 12 16 18 19 22 23 28 29 32 36 37 40 44 47 50 53 56 58 61 64 66 1 4 6 9 10 12 13 19 20 23 24 29 30 32 33 38 41 45 48 51 52 54 57 59 62 65 1 4 6 9 10 13 14 20 21 24 25 30 31 33 34 37 39 46 47 49 53 55 58 60 63 66 1 2 3 4 5 14 15 19 20 22 26 30 31 32 36 39 41 43 45 47 53 55 59 61 62 64 1 2 3 4 5 15 16 20 21 22 23 27 31 32 33 37 40 44 46 48 54 56 57 60 63 65 1 2 3 4 5 12 16 17 21 23 24 27 28 33 34 38 41 42 45 49 52 55 58 61 64 66 1 2 3 4 5 12 13 17 18 24 25 28 29 34 35 37 39 43 46 50 53 56 57 59 62 65 1 2 3 4 5 13 14 18 19 25 26 29 30 35 36 38 40 42 44 51 52 54 58 60 63 66 3 5 8 9 10 12 16 19 20 24 25 27 31 35 36 39 41 44 46 48 50 52 58 60 62 64 3 5 8 9 10 12 13 20 21 25 26 27 28 32 36 37 40 42 45 49 51 53 59 61 63 65 3 5 8 9 10 13 14 17 21 22 26 28 29 32 33 38 41 43 46 47 50 54 57 60 64 66 3 5 8 9 10 14 15 17 18 22 23 29 30 33 34 37 39 42 44 48 51 55 58 61 62 65 3 5 8 9 10 15 16 18 19 23 24 30 31 34 35 38 40 43 45 47 49 56 57 59 63 66 2 4 7 8 9 15 16 17 21 24 25 29 30 32 36 38 40 44 46 49 51 53 55 57 62 64 2 4 7 8 9 12 16 17 18 25 26 30 31 32 33 39 41 42 45 47 50 54 56 58 63 65 2 4 7 8 9 12 13 18 19 22 26 27 31 33 34 37 40 43 46 48 51 52 55 59 64 66 2 4 7 8 9 13 14 19 20 22 23 27 28 34 35 38 41 42 44 47 49 53 56 60 62 65 2 4 7 8 9 14 15 20 21 23 24 28 29 35 36 37 39 43 45 48 50 52 54 61 63 66 1 3 6 7 8 13 16 18 21 23 26 28 31 33 36 38 39 43 44 48 49 53 54 58 59 62 1 3 6 7 8 12 14 17 19 22 24 27 29 32 34 39 40 44 45 49 50 54 55 59 60 63 1 3 6 7 8 13 15 18 20 23 25 28 30 33 35 40 41 45 46 50 51 55 56 60 61 64 1 3 6 7 8 14 16 19 21 24 26 29 31 34 36 37 41 42 46 47 51 52 56 57 61 65 1 3 6 7 8 12 15 17 20 22 25 27 30 32 35 37 38 42 43 47 48 52 53 57 58 66
Oval
Ein Oval des Blockplans ist eine Menge seiner Punkte, von welcher keine drei auf einem Block liegen. Hier ist ein Beispiel eines Ovals maximaler Ordnung für jede Lösung dieses Blockplans:
- Lösung 1
1 2 6
- Lösung 2
1 2 6
- Lösung 3
1 2 6
Literatur
- Thomas Beth, Dieter Jungnickel, Hanfried Lenz: Design Theory. 1. Auflage. B.I. Wissenschaftsverlag, Mannheim/Wien/Zürich 1985, ISBN 3-411-01675-2.
- Albrecht Beutelspacher: Einführung in die endliche Geometrie. Band 1: Blockpläne. B.I. Wissenschaftsverlag, Mannheim/Wien/Zürich 1982, ISBN 3-411-01632-9.
Weblinks
Einzelnachweise
- ↑ Tran van Trung: The existence of symmetric block designs with parameters (41,16,6) and (66,26,10). In: Journal of Combinatorial Theory, Series A. Bd. 33, Nr. 2, 1982, S. 201–204, doi:10.1016/0097-3165(82)90008-5.
- ↑ Rudolf Mathon, Alexander Rosa: 2-(ν, κ, λ) Designs of Small Order. In: Charles J. Colbourn, Jeffrey H. Dinitz (Hrsg.): Handbook of Combinatorial Designs. 2nd Edition. Chapman & Hall/CRC, Boca Raton FL u. a. 2007, ISBN 978-1-4200-1054-1, S. 25–57.