Als approximative Konfidenzbereiche bezeichnet man in der mathematischen Statistik eine spezielle Klasse von Konfidenzbereichen. Im Gegensatz zu herkömmlichen Konfidenzbereichen halten sie ihr Konfidenzniveau nicht immer ein, sondern nur bei der Betrachtung einer immer größer werdenden Stichprobe. Zur Konstruktion von approximativen Konfidenzbereichen werden asymptotische Eigenschaften von Statistiken wie asymptotische Normalität und die Grenzwertsätze der Stochastik herangezogen, wodurch sich der Anwendungsbereich stark erweitert.

Ist der Bereich ein Intervall, so spricht man auch von einem approximativen Konfidenzintervall. Die Bereichsschätzer, welche approximative Konfidenzbereiche liefern, werden entsprechend approximative Bereichsschätzfunktionen genannt.

Definition

Rahmenbedingungen

Für seien Messräume und Familien von Wahrscheinlichkeitsmaßen auf .

In den meisten Fällen handelt es sich bei den Messräumen und Familien von Wahrscheinlichkeitsverteilungen um sukzessiv größer werdende Produktmodelle.

Sei ein weiterer Messraum sowie

die zu schätzende Funktion und sei eine Folge von Bereichsschätzern, wobei

.

Formulierung

Unter den obigen Rahmenbedingungen heißt die Folge von Bereichsschätzern eine approximative Bereichsschätzfunktion für zum Konfidenzniveau , wenn

für alle

gilt. Hierbei bezeichnet den Limes inferior.

Beispiel

Typische Beispiele von approximativen Konfidenzintervallen finden sich im Binomialmodell. Eine detaillierte Beschreibung findet sich im Artikel Konfidenzintervall für die Erfolgswahrscheinlichkeit der Binomialverteilung. Sind exemplarisch Bernoulli-verteilt für alle und ist

das Stichprobenmittel, so ist

ein mögliches approximatives Konfidenzintervall für die Erfolgswahrscheinlichkeit der Binomialverteilung zum Konfidenzniveau .

Quellen

  • Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 235–238, doi:10.1515/9783110215274.
  • Ludger Rüschendorf: Mathematische Statistik. Springer Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-41996-6, S. 230–240, doi:10.1007/978-3-642-41997-3.
  • Claudia Czado, Thorsten Schmidt: Mathematische Statistik. Springer-Verlag, Berlin Heidelberg 2011, ISBN 978-3-642-17260-1, S. 144–145, doi:10.1007/978-3-642-17261-8.

Einzelnachweise

  1. Ludger Rüschendorf: Mathematische Statistik. Springer Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-41996-6, S. 230, doi:10.1007/978-3-642-41997-3.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.