Der Diffusionskoeffizient , auch Diffusionskonstante oder Diffusivität genannt, ist ein Transportkoeffizient und dient in den Fickschen Gesetzen zur Berechnung des thermisch bedingten Transports eines Stoffes aufgrund der zufälligen Bewegung der Teilchen. Dabei kann es sich um einzelne Atome in einem Feststoff oder um Teilchen in einem Gas oder einer Flüssigkeit handeln. Der Diffusionskoeffizient ist daher ein Maß für die Beweglichkeit der Teilchen und lässt sich nach der Einstein-Smoluchowski-Gleichung aus dem durchschnittlichen Quadrat der zurückgelegten Wegstrecke pro Zeit ermitteln:

(oder alternativ mittels der Green-Kubo-Relationen).

Die SI-Einheit des Diffusionskoeffizienten ist daher . Zur Angabe des Diffusionskoeffizienten gehört immer die Angabe, welcher Stoff in welchem Stoff diffundiert, sowie als wichtigste Einflussgröße die Temperatur.

In Gasen

Beispiele für Diffusionskoeffizienten in Gasen (bei 1 atm)
System Temperatur in °C Diffusionskoeffizient in m²/s
LuftSauerstoff 0 1,76 × 10−5
Luft – Kohlendioxid 8,9 1,48 × 10−5
44,1 1,77 × 10−5
WasserstoffStickstoff 24,1 7,79 × 10−5

Diffusionskoeffizienten in Gasen sind stark abhängig von Temperatur und Druck. In erster Näherung gilt, dass eine Verdopplung des Druckes zur Halbierung des Diffusionskoeffizienten führt.

Der Diffusionskoeffizient folgt gemäß der Chapman-Enskog-Theorie folgender Gleichung für zwei gasförmige Stoffe (Indizes 1 und 2):

mit den physikalischen Größen

  • – Diffusionskoeffizient
  • NAvogadro-Konstante
  • M1,2molare Massen der Stoffe
  • kBBoltzmann-Konstante
  • TTemperatur
  • p – Druck
  • – (mittlerer) Kollisionsdurchmesser (Werte tabelliert)
  • – Kollisionsintegral, abhängig von Temperatur und Stoffen (Werte tabelliert, Größenordnung: 1).

Für die Selbstdiffusion (d. h. für den Fall, dass nur eine Teilchensorte vorhanden ist) vereinfacht sich o. g. Zusammenhang zu:

mit

In Flüssigkeiten

Beispiele für Diffusionskoeffizienten in Wasser (bei unendlicher Verdünnung und 25 °C)
Stoff Diffusionskoeffizient in m²/s
Sauerstoff 2,1 × 10−9
Schwefelsäure 1,73 × 10−9
Ethanol 0,84 × 10−9

Diffusionskoeffizienten in Flüssigkeiten betragen in der Regel etwa ein Zehntausendstel von Diffusionskoeffizienten in Gasen. Sie werden beschrieben durch die Stokes-Einstein-Gleichung:

mit

Auf dieser Gleichung basieren viele empirische Korrelationen.

Da die Viskosität des Lösungsmittels eine Funktion der Temperatur ist, ist die Abhängigkeit des Diffusionskoeffizienten von der Temperatur nichtlinear.

In Feststoffen

Beispiele für Diffusionskoeffizienten in Feststoffen
System Temperatur in °C Diffusionskoeffizient in m²/s
Wasserstoff in Eisen 10 1,66 × 10−13
50 11,4 × 10−13
100 124 × 10−13
Kohlenstoff in Eisen 800 15 × 10−13
1100 450 × 10−13
Gold in Blei 285 0,46 × 10−13

Diffusionskoeffizienten in Feststoffen sind in der Regel mehrere tausend Mal kleiner als Diffusionskoeffizienten in Flüssigkeiten.

Für die Diffusion in Festkörpern sind Sprünge zwischen verschiedenen Gitterplätzen erforderlich. Dabei müssen die Teilchen eine Energiebarriere E überwinden, was bei höherer Temperatur leichter möglich ist als bei niedrigerer. Dies wird beschrieben durch den Zusammenhang:

mit

D0 lässt sich näherungsweise berechnen als:

mit

  • α0Atomabstand
  • N – Anteil der vakanten Gitterplätze
  • ω – Sprungfrequenz

Allerdings empfiehlt es sich, insbesondere Diffusionskoeffizienten in Feststoffen experimentell zu bestimmen.

Effektiver Diffusionskoeffizient

Der effektive Diffusionskoeffizient beschreibt Diffusion durch den Porenraum poröser Medien. Da er nicht einzelne Poren, sondern den gesamten Porenraum betrachtet, ist er eine makroskopische Größe:

mit

  • εtPorosität, die für den Transport zur Verfügung steht; sie entspricht der Gesamtporosität abzüglich Poren, die aufgrund ihrer Größe für die diffundierenden Teilchen nicht zugänglich sind, und abzüglich Sackgassen- und blinder Poren (Poren ohne Verbindung zum restlichen Porensystem)
  • δKonstriktivität; sie beschreibt die Verlangsamung der Diffusion durch eine Erhöhung der Viskosität in engen Poren als Folge der größeren durchschnittlichen Nähe zur Porenwand und ist eine Funktion von Porendurchmesser und Größe der diffundierenden Teilchen.
  • τTortuosität („Gewundenheit“)

Scheinbarer Diffusionskoeffizient

Der scheinbare (apparente) Diffusionskoeffizient erweitert den effektiven Diffusionskoeffizienten um den Einfluss der Sorption.

Für lineare Sorption berechnet er sich zu:

mit

  • Kd – linearer Sorptionskoeffizient
  • ρRohdichte
  • ε – Porosität

Bei nichtlinearer Sorptionsisotherme ist der scheinbare Diffusionskoeffizient stets eine Funktion der Konzentration, was die Berechnung der Diffusion erheblich erschwert.

Siehe auch

Einzelnachweise

  1. 1 2 3 E. L. Cussler: Diffusion – Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge/New York, 1997, ISBN 0-521-56477-8.
  2. T. R. Marrero, E. A. Mason: Gaseous Diffusion Coefficients. In: Journal of Physical and Chemical Reference Data. Band 1, Nr. 1, 1. Januar 1972, ISSN 0047-2689, S. 3–118, doi:10.1063/1.3253094 (nist.gov [PDF; abgerufen am 8. Oktober 2017]).
  3. 1 2 3 J. Hirschfelder, C. F. Curtiss, R. B. Bird: Molecular Theory of Gases and Liquids. Wiley, New York, 1954, ISBN 0-471-40065-3
  4. Franz Durst: Grundlagen der Strömungsmechanik: Eine Einführung in die Theorie der Strömung von Fluiden. Springer, Berlin, 2006, ISBN 3-540-31323-0.
  5. A. Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (PDF; 733 kB), Annalen der Physik. 17, 1905, S. 549ff.
  6. W. Jost: Diffusion in solids, liquids and gases. Academic Press Inc., New York, 1960.
  7. 1 2 P. Grathwohl: Diffusion in natural porous media: Contaminant transport, sorption/desorption and dissolution kinetics. Kluwer Academic Publishers, 1998, ISBN 0-7923-8102-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.