Ein euklidisches Ei ist ein ausschließlich aus Kreisbögen zusammengesetztes Oval mit genau einer Symmetrieachse. Dabei müssen die Kreisbögen an den Nahtstellen gemeinsame Tangenten besitzen, wodurch die von ihnen gebildete Kurve relativ glatt wirkt.

Aus Sicht der Analysis handelt es sich bei einem euklidisches Ei um eine glatte (ebene) Kurve. Wenn man das euklidische Ei stattdessen abschnittweise anhand (eindimensionaler) Funktionen beschreibt, so liegen diese in der Differentiationsklasse .

Die Existenz einer gemeinsamen Tangente an den Nahtstellen hat zur Folge, dass die Nahtstelle und die beiden Zentren der an ihr aufeinandertreffenden Kreisbögen auf einer gemeinsame Geraden liegen (siehe Zeichnung rechts).

Literatur

Commons: Euklidische Eier – Sammlung von Bildern, Videos und Audiodateien
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.