In der Mathematik definiert man die Evolution einer Differentialgleichung als eine zweiparametrige Abbildung, gegeben durch:

wobei

  • die Lösung des Anfangswertproblems ist, das aus der o. g. Dgl. und der Anfangsbedingung besteht
  • hinreichend klein sein soll.

In Worten: Die Evolution bildet den Wert einer beliebigen Lösungskurve zum Zeitpunkt ab auf den Wert der Lösungskurve zum Zeitpunkt . Sie beschreibt also die weitere Entwicklung der Lösung ausgehend vom Startpunkt .

Die Evolution der Differentialgleichung hat folgende Eigenschaften:

  • für (Transitivität).

Im Fall autonomer Differentialgleichungen ist die Startzeit beliebig. Man schreibt dann statt einfach und bezeichnet als Phasenfluss.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.