Die Axonometrie ist ein Verfahren in der darstellenden Geometrie, um relativ einfach räumliche Objekte in einer Zeichenebene darzustellen.

Hierbei verwendet man die Koordinaten wesentlicher Punkte und die Bilder der drei Koordinatenachsen in einer Zeichenebene. Das Resultat ist für jede Wahl der Bildachsen bis auf eine Skalierung eine Parallelprojektion. Im Allgemeinen ergibt sich eine schiefe (oder schräge) Parallelprojektion. Nur bei besonderer Wahl der Bildachsen und der Verzerrungsverhältnisse ergibt sich eine orthogonale (oder senkrechte) Parallelprojektion, das heißt die Abbildungsstrahlen stehen senkrecht auf der Bildebene (s. orthogonale Axonometrie).

Prinzip der Axonometrie

Man denkt sich die Koordinatenachsen zusammen mit den Punkten mit Hilfe paralleler Strahlen auf eine Zeichenebene projiziert. Die Einheitsstrecken werden in der Regel verzerrt wiedergegeben. Die Verzerrungsverhältnisse werden mit , und bezeichnet. Ein Punkt wird nun wie folgt in das Bild mit den Koordinatenachsen eingetragen:

Man gehe vom Nullpunkt
um in -Richtung, dann
um in -Richtung und schließlich
um in -Richtung.

(Die Reihenfolge kann beliebig vertauscht werden.)

Da es für eine konkrete Projektionsrichtung und Lage der Bildebene sehr mühsam ist, Bildachsen und Verzerrungen zu konstruieren, wählt man einfach die Bilder der Koordinatenachsen in der Zeichenebene und definiert geeignete Verzerrungen. Die mathematische Rechtfertigung dafür ist der Satz von Pohlke: Für (fast) jede Wahl der Bildachsen und Verzerrungen erhält man bis auf Ähnlichkeit (Skalierung) das Bild einer Parallelprojektion. (Die Bilder der Koordinatenachsen dürfen nicht auf eine Gerade fallen, die Verzerrungen sollen größer als Null sein.)

Bildachsen und Verzerrungen

(Für Festlegungen im Bereich Technisches Zeichnen: siehe DIN 5 Teil 10.)

Nur bei geeigneter Wahl von Bildachsen und Verzerrungen ist der Bildeindruck gut. Eine gute Bildwirkung erzielt man, wenn man die Bildachsen und die Verzerrungsverhältnisse so wählt, dass das Ergebnis eine senkrechte Parallelprojektion ist. Da man mit möglichst einfachen Verzerrungsverhältnissen (z. B.: 1 oder 0,5) arbeiten möchte, kann man sich bei der Wahl der Bildachsen und Verzerrungen an den Beispielen im Bild („verschiedene Verzerrungen eines Einheitswürfels“) orientieren. Hat man Karo-Papier zur Verfügung, so bietet sich die folgende Wahl für Achsen und Verzerrungen an: Zwei Koordinatenachsen fallen mit den Hauptrichtungen des Karo-Papiers zusammen, die dritte Achse verläuft in Richtung der Karo-Diagonalen (siehe Eingangsbild). Um die Konstruktion einfach zu halten, sollte man die Einheiten auf der waagrechten und senkrechten Achse zwei Kästchen und auf der Diagonalrichtung eine Kästchendiagonale als Einheit wählen. Das ergibt dann folgende Verzerrungen: gleich ≈ 0,7:1:1.

Axonometrien mit zwei gleichen Verzerrungen heißen dimetrisch, mit drei gleichen Verzerrungen isometrisch, ansonsten trimetrisch.

Festlegung:

  • Winkel zwischen der -Achse und der -Achse
  • Winkel zwischen der -Achse und der -Achse
  • Winkel zwischen der -Achse und der -Achse

Kavalierprojektion, Kabinettprojektion

  • Bildebene parallel zur yz-Ebene, d. h.
    • und
    • .
  • Bemerkung: In der Literatur werden die Begriffe Kavalierperspektive und Kabinettperspektive nicht einheitlich definiert. Die obige Definition ist die allgemeinste. Oft werden weitere Beschränkungen gefordert:
    • Kabinettprojektion: zusätzlich und (Dimetrie),
    • Kavalierprojektion: zusätzlich und (Isometrie).

Vogelperspektive, Militärprojektion

  • Bildebene parallel zur xy-Ebene, d. h.
    • und
    • (Dimetrie).
  • Für die Militärprojektion gilt zusätzlich: (Isometrie).

Solche Axonometrien werden bei Stadtplänen verwendet, um Maßstabgerechtigkeit (horizontal) und Anschaulichkeit von Gebäuden zu erreichen.

Ingenieur-Axonometrie

Bei einer Ingenieur-Axonometrie nach ISO 5456-3 sind die Verzerrungen:

(dimetrische Axonometrie)

Die Achsen sind wie folgt ausgerichtet:

(oder auch 7° und 42° zur Waagerechten)

Vorteile der Ingenieur-Axonometrie sind:

  • einfache Verzerrungen,
  • fast eine senkrechte Axonometrie (gute Bildwirkung, der Skalierungsfaktor ist 1,06),
  • der Umriss einer Kugel ist ein Kreis (ansonsten ist er eine Ellipse).

Mathematischer Hintergrund

Eine Ingenieur-Axonometrie entspricht einer senkrechten Parallelprojektion auf eine Ebene mit dem Normalenvektor (= negativer Projektionsrichtung) mit anschließender Skalierung um den Faktor . Der Grundriss des Normalenvektors schließt mit der x-Achse einen Winkel von ein. Der Winkel gegenüber der x-y-Ebene beträgt . Die exakten Winkel zwischen den Bildern der Koordinatenachsen sind:

Für die (dimetrische) senkrechte Parallelprojektion mit (ohne Skalierung!) gilt:

  • .

Isometrische Axonometrie

(Man beachte die Mehrfachbedeutung des Ausdrucks Isometrie in der Mathematik.)

Bei der isometrischen Axonometrie, kurz: Isometrie, sind die Verzerrungen alle gleich. Die Winkel zwischen den Achsen-Bildern können noch frei gewählt werden.

Bei der als Standard-Isometrie bezeichneten Darstellung gilt folgendes:

  • (alle Achsen unverzerrt)
  • , wobei die -Achse senkrecht ist

Die Vorteile dieser Parameterwahl sind:

  • Die Koordinaten können unverändert übernommen werden,
  • Das axonometrische Bild ist eine um den Faktor skalierte Orthogonalprojektion (senkrechte Parallelprojektion). Daraus resultiert eine gute Bildwirkung und der Umriss einer Kugel ist ein Kreis.
  • Zeichensysteme, wie z. B. xfig, bieten ein Dreiecksraster, um das Zeichnen von Objekten mit achsenparallelen Kanten zu erleichtern.

Die „Nachteile“ sind:

  • Ein Schönheitsfehler aufgrund der Symmetrie ist, dass zwei der 8 Eckpunkte eines achsenparallelen Würfels zusammenfallen (siehe Bild „Beispiele in Standard-Isometrie“).

Überblick über die speziellen Axonometrien

Bei einer allgemeinen Axonometrie können die zwei Winkel zwischen den Achsen und die Verzerrungen (fast) frei gewählt werden. Damit alle drei Achsenbilder nicht auf einer Geraden liegen, muss sein. Diese Beschränkung für die Wahl der Winkel garantiert eine Ansicht von schräg oben. Die Beschränkung liefert Ansichten von schräg unten . Sie vertauscht die übliche Orientierung von der x-Achse zu der y-Achse. Negative Verzerrungen würden die übliche Orientierung der Achsen verändern.

Kreise in der Axonometrie

Kreise werden bei Parallelprojektion im Allgemeinen auf Ellipsen abgebildet. Ein wichtiger Sonderfall: Ein Kreis, dessen Kreisebene parallel zur Bildtafel ist, wird unverzerrt abgebildet. Dies ist beispielsweise der Fall bei einer Kavalierprojektion, bei der die yz-Ebene (siehe Beispiel) unverzerrt abgebildet wird. Bei einer Vogelperspektive bleiben alle horizontalen Kreise unverzerrt. Falls ein Kreis zu einer Ellipse verzerrt wird (siehe Bild „Axonometrie: Kreise in Kavalierprojektion“), kann man einige Punkte und ein Tangentenquadrat abbilden und in das Bild des Quadrates (Parallelogramm) eine Ellipse von Hand oder mit einem Zeichenprogramm einpassen. Dabei ist zu beachten, dass die Bilder von senkrechten Kreisdurchmessern im Allgemeinen nicht die Hauptachsen der Bildellipse, sondern konjugierte Durchmesser sind. Aus diesen kann man die Hauptachsen mit Hilfe der Rytzschen Achsenkonstruktion rekonstruieren. Anschließend lässt sich die Ellipse mit einem Zeichenprogramm oder einem Ellipsenzirkel exakt zeichnen. Falls man nur Zirkel, Lineal und ein Kurvenlineal zur Hand hat, lässt sich die Ellipse erstaunlich gut und schnell mit Hilfe der Scheitelkrümmungskreise näherungsweise zeichnen (s. Ellipse oder C. Leopold, S. 64). In der orthogonalen Axonometrie kommt man meistens ohne die aufwändige Rytzkonstruktion aus.

Kugeln in der Axonometrie

Der Umriss einer Kugel ist nur bei orthogonaler Axonometrie einfach ein Kreis mit dem Radius der Kugel. Da sowohl die Ingenieuraxonometrie als auch die Standardisometrie skalierte Orthogonalprojektionen sind (s. oben), erscheint der Umriss einer Kugel hier auch jeweils als Kreis, allerdings skaliert. In einer beliebigen Axonometrie erscheint der Umriss einer Kugel als Ellipse, was den Betrachter irritieren mag (siehe das Bild einer Kugel in isometrischer Vogelperspektive). Deshalb sollte man Szenen mit Kugeln besser mit orthogonaler Axonometrie oder wenigstens in Ingenieur-Axonometrie oder Standardisometrie abbilden.

Quellen

  • Ulrich Graf, Martin Barner: Darstellende Geometrie. Quelle & Meyer, Heidelberg 1961, ISBN 3-494-00488-9.
  • Fucke, Kirch, Nickel: Darstellende Geometrie. Fachbuch-Verlag, Leipzig, 1998, ISBN 3-446-00778-4
  • Cornelie Leopold: Geometrische Grundlagen der Architekturdarstellung. Verlag W. Kohlhammer, Stuttgart, 2005, ISBN 3-17-018489-X
Wiktionary: Axonometrie – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Hans Hoischen: Technisches Zeichnen. Grundlagen, Normen, Beispiele, Darstellende Geometrie. 21. Auflage. Girardet, Düsseldorf 1986, ISBN 3-7736-2023-3, S. 252, 7.6.2 Dimetrische Projektion DIN 5 Teil 2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.