JUICE

JUICE mit Jupiter, Ganymed, Io, Europa und Kallisto
NSSDC ID 2023-053A
Missions­ziel JupiterVorlage:Infobox Sonde/Wartung/Missionsziel
Betreiber Europaische Weltraumorganisation ESAVorlage:Infobox Sonde/Wartung/Betreiber
Hersteller Airbus Defence and SpaceVorlage:Infobox Sonde/Wartung/Hersteller
Träger­rakete Ariane 5 ECA+ (VA260)Vorlage:Infobox Sonde/Wartung/Traegerrakete
Startmasse etwa 5200 kgVorlage:Infobox Sonde/Wartung/Startmasse
Instrumente
Vorlage:Infobox Sonde/Wartung/Instrumente

3GM, GALA, J-MAG, JANUS, MAJIS, PEP, RIME, RPWI, PRIDE, SWI, UVS

Verlauf der Mission
Startdatum 14. April 2023, 12:14 UTCVorlage:Infobox Sonde/Wartung/Startdatum
Startrampe Centre Spatial Guyanais, ELA-3Vorlage:Infobox Sonde/Wartung/Startrampe
Vorlage:Infobox Sonde/Wartung/Verlauf
14. April 2023 Start
August 2024 Swing-by am Mond
August 2025 Swing-by an der Venus
September 2026 1. Swing-by an der Erde
Januar 2029 2. Swing-by an der Erde
Juli 2031 Eintritt in Orbit um Jupiter
Dezember 2034 Eintritt in Orbit um Ganymed
Ende 2035 Einschlag auf Ganymed

JUICE (Jupiter Icy Moons Explorer; deutsch Jupiter-Eismond-Erkunder) ist eine am 14. April 2023 von der ESA gestartete Jupitersonde. Ihr Ziel ist die Erforschung der Galileischen Monde Europa, Ganymed und Kallisto des Planeten Jupiter.

Vorgeschichte

Die Auswahl der JUICE-Mission wurde von der ESA am 2. Mai 2012 bekannt gegeben. Es ist die erste Large-Class-Mission im Rahmen des ESA-Programms Cosmic Vision 2015–2025. Das Projekt setzte sich in der Endrunde des Auswahlverfahrens gegen die Vorschläge eines Gravitationswellen-Observatoriums (New Gravitational Wave Observatory, NGO) und eines Teleskops für Hochenergie-Astrophysik (Advanced Telescope for High Energy Astrophysics, ATHENA) durch. Large-Class-Missionen stehen komplett unter der Kontrolle der ESA, haben lange Vorbereitungszeit und lange Laufzeiten und sollen mit neuer Technologie die Forschung in neue Bereiche weitertreiben.

JUICE ist das umgewidmete Projekt des Jupiter Ganymede Orbiters, der der Beitrag der ESA zur Europa Jupiter System Mission sein sollte. Da das Gemeinschaftsprojekt bei der NASA durch Budgetkürzungen gestrichen wurde, entschied sich die ESA für eine selbstständig durchgeführten Mission. Die Mission baut technologisch auf den interplanetaren Missionen Mars Express, Venus Express, Rosetta und BepiColombo auf und öffnet die Zukunft für weitere Missionen in das weiter entfernte äußere Sonnensystem, beispielsweise für eine Uranus-Mission. JUICE geht dabei weit über die Galileo-Mission der NASA hinaus und ergänzt die seit 2011 laufende JUNO-Mission.

Missionsziele

JUICE ist eine komplexe Mission, die das Jupiter-System und vor allem den Jupitermond Ganymed im Detail untersuchen und neue Erkenntnisse über die Jupitermonde Europa und Kallisto bringen soll.

Es soll untersucht werden, ob diese Monde Leben ermöglichen und für Lebewesen bewohnbar sind. Die Mission beobachtet Jupiters Atmosphäre und Magnetfeld und untersucht, wie es mit den Jupitermonden interagiert. Untersucht wird die Dicke der Eiskruste auf Europa, zusätzlich sollen mögliche Landeplätze für künftige Missionen gesucht werden. Auf Ganymed wird die Oberfläche des Eises untersucht, aber auch die Schichtdicke und der innere Aufbau des Monds, inklusive des Ozeans unter dem Eis. Ganymed ist bisher der einzige Mond im Sonnensystem, von dem ein Magnetfeld bekannt ist. Bei der Mission soll dieses Magnetfeld untersucht werden. JUICE hat Instrumente zur Untersuchung der Eispartikel, die von Europa ausgestoßen werden und weitere Instrumente zur Untersuchung der Exosphäre der Jupitermonde.

Eine Untersuchung des Jupitermonds Europa soll auch mit der NASA-Mission Europa Clipper (geplanter Start 2024 / Ankunft 2031) erfolgen.

Raumsonde

JUICE ist näherungsweise würfelförmig, dreiachsenstabilisiert und verfügt über Reaktionsräder. Die Sonde hat eine Leermasse von etwa 2420 kg, davon ca. 280 kg für die Nutzlasten. Beim Start war sie mit 3650 kg Treibstoffen betankt und hatte mit eingefahrenen Anbauten die Maße 4,09 × 2,86 × 4,35 m.

JUICEs Antriebssystem verwendet als Treibstoff MMH und den Oxidator MON. Das Haupttriebwerk kann einen Schub von 425 N erzeugen und wird zum Einschwenken in die Jupiterumlaufbahn und für die Vorbeiflüge benötigt, außerdem gibt es kleine Steuerdüsen.

Die Energieversorgung erfolgt durch GaAs-Solarzellen mit hohem Wirkungsgrad. Die Sonde hat zehn mit Karbonfasern und einer Wabenstruktur verstärkte Paneele in den Maßen 2,5 m × 3,5 m, wobei auf jeder Seite fünf kreuzförmig angeordnet sind. Insgesamt haben die schwenkbaren Paneele ca. 85 m² Fläche und eine Spannweite von 27 m. Es sind bis dahin die größten Sonnengeneratoren, die jemals in interplanetaren Missionen eingesetzt wurden. Im Bereich des Jupiter ist die Sonneneinstrahlung 25-mal schwächer als auf der Erde, dort kann der Generator noch 850 W erzeugen. Fünf Batteriemodule sichern die Stromversorgung, solange die Sonde im Schatten hinter einem Himmelskörper ist. Diese Phasen können bis zu 4,8 Stunden dauern.

Zur Datenübertragung benutzt JUICE eine fest montierte 2,5-Meter-Parabolantenne mit hohem Gewinn, die im Ka- und X-Band eine Datenrate von mindestens 2 Gb pro Tag zusammen mit den Deep-Space-Stationen der ESA ermöglicht, dazu eine schwenkbare Mittelgewinnantenne. Während des Vorbeiflugs an Venus wird die Hauptantenne als Schild zur Sonne ausgerichtet, um die Instrumente vor Hitze zu schützen. In dieser Zeit wird die Mittelgewinnantenne die Daten senden, ebenso während diverser Manöver bei Jupiter, solange die Hauptantenne nicht zur Erde ausgerichtet werden kann. Ein Signal ins Jupitersystem und zurück braucht ungefähr 1,5 Stunden.

Zum Schutz gegen die niedrigen Temperaturen bei Jupiter hat die Sonde eine mehrschichtige Isolation, die ebenfalls gegen die hohen Temperaturen während des Vorbeiflugs an Venus schützt. Die Sonde ist konstruiert, um Temperaturen zwischen +250 und −230 °C zu widerstehen. Als Schutz gegen die intensive Strahlung und die starken Magnetfelder bei Jupiter sind die elektronischen Komponenten abgeschirmt, ein Teil der Elektronik ist gegen Strahlung gehärtet.

Zur Kontrolle der ausfahrbaren Antennen und Solarpaneele hat die Sonde zwei Monitoring Kameras, das sind farbige „Selfiekameras“ mit kleiner Brennweite und 1024 × 1024 Pixel Auflösung. Sie werden auch während der Vorbeiflüge aktiv sein.

Für die große Menge an Wissenschaftsdaten gibt es einen Speicher von 1,25 Tb, das reicht für die Daten, die über mehrere Tage gesammelt werden.

Die Sonde arbeitet aufgrund der langen Signallaufzeiten weitgehend autonom und wird alle Manöver selbst steuern.

Instrumente

Die ESA wählte die folgenden 11 Instrumente und Experimente als Nutzlast für JUICE aus. Das PRIDE-Experiment verfügt über keine eigene Hardware, sondern nutzt das Kommunikationssystem und die Antennen der Sonde in Verbindung mit Bodenstationen. Das UVS und Komponenten für RIME und RPWI wurden von der NASA geliefert, Komponenten für SWI, PEP, GALA, RPWI stammen von der JAXA.

Abk. Bezeichnung Beschreibung
3GMGravity & Geophysics of Jupiter
and Galilean Moons
3GM ist ein radiowissenschaftliches Experiment mit einem Ka-Band-Transponder und einem hochstabilen Oszillator. Dieses Instrument soll das Schwerefeld von Ganymed und die inneren Ozeane auf den Eismonden untersuchen. 3GM soll außerdem die Atmosphären und Ionosphären von Jupiter (0,1–800 mbar) und den Eismonden untersuchen. Betrieben von der Università di Roma „La Sapienza“ und ASI, Italien.
GALAGanymede Laser AltimeterDer Laserhöhenmesser soll die Topographie und die Verformungen, Hebungen und Senkungen der Oberfläche durch die Gezeitenkräfte beobachten. Der Laser bildet bei 200 km Abstand einen Punkt von 20 m Durchmesser auf der Oberfläche, dabei ist die Höhenauflösung 0,1 m. Betrieben vom DLR, Institut für Planetenforschung, Deutschland. Komponenten stammen von HENSOLDT Optronics GmbH, Fraunhofer IOF und JAXA.
J-MAGMagnetometer for JUICEDieses Instrument nutzt einen ausklappbaren Arm aus 3 Segmenten von 10,5 m Länge. Am äußersten Segment sind zwei Fluxgate-Magnetometer und am Ende des Arms ein optisch gepumptes Quanteninterferenz-Magnetometer. Damit soll das Magnetfeld Jupiters und die Interaktion mit dem Magnetfeld von Ganymed untersucht werden. Weiterer Einsatz zur Untersuchung von verborgenen Ozeanen auf den Eismonden. Betrieben vom Imperial College London und UKSA, Vereinigtes Königreich.
JANUSJovis, Amorum ac Natorum Undique Scrutator, camera systemOptische Kamera zur Kartierung der Eismonde. JANUS hat 13 Filter, ein Blickfeld von 1,3 Grad und eine räumliche Auflösung von 2,4 m auf Ganymed und 10 km auf Jupiter. Entwickelt von der Università degli Studi di Napoli „Parthenope“ und ASI, Italien.
MAJISMoons and Jupiter
Imaging Spectrometer
Hyperspektrales abbildendes Spektrometer. Es soll die Eigenschaften der Troposphäre auf Jupiter erkunden und die Eise und Mineralien auf der Oberfläche der Eismonde näher bestimmen. Die Wellenbereiche umfassen sichtbares und infrarotes Licht im Bereich zwischen 0,4 und 5,7 Mikrometer mit einer spektralen Auflösung zwischen 3 und 7 nm. Die räumliche Auflösung beträgt bis 25 m auf Ganymed und ungefähr 100 km auf Jupiter. Hergestellt vom Institut d'Astrophysique Spatiale und CNES, Frankreich.
PEPParticle Environment PackageTeilchenspektrometer zur Messung von Dichte und Richtung von neutralen und geladenen Teilchen, thermalem Plasma und neutralen Gasen im Jupitersystem. Das PEP besteht aus zwei Einheiten, PEP-Lo und PEP-Hi, mit insgesamt sechs unterschiedlichen Sensoren: JNA, JEI, NIM, JENI, JoEE und JDC. Energiebereich von <0.001 eV bis >1 MeV. Zur Verfügung gestellt durch das Swedish Institute of Space Physics (Institutet för rymdfysik, IRF) und SNSB, Schweden, dem Max-Planck-Institut für Sonnensystemforschung, der Universität Bern, sowie dem Johns Hopkins University Applied Physics Laboratory und der NASA. Komponenten kommen u. a. von JAXA.
RIMERadar for Icy Moons ExplorationRadar für die Eismonderforschung. Das Instrument benutzt eine ausfahrbare 16-Meter-Antenne und soll damit die Eisoberfläche durchdringen und bis zu 9 km unter der Eisoberfläche messen können. Die vertikale Auflösung beträgt bis zu 30 Meter. Entwickelt von der Università degli Studi di Trento und ASI in Italien. Komponenten wurden von der NASA geliefert.
RPWIRadio & Plasma Wave InvestigationRadio- & Plasmawellenuntersuchung. Erforscht Radioemissionen und das Plasma in der Umgebung Jupiters und der Eismonde. Das RPWI basiert auf den vier Experimenten GANDALF, MIME, FRODO und JENRAGE. Es verfügt über verschiedene Sensoren und Langmuir-Sonden. Es soll elektrische und magnetische Felder im Radiobereich in Frequenzen von 80 kHz bis 45 MHz messen. Gebaut vom Swedish Institute of Space Physics (Institutet för rymdfysik, IRF), Uppsala und SNSB, Schweden. Komponenten wurden von NASA und JAXA beigesteuert.
PRIDEPlanetary Radio Interferometer
& Doppler Experiment
Planetarisches Radio-Interferometer- & Doppler-Experiment. Das Experiment nutzt das Kommunikationssystem der Sonde und VLBI für eine präzise Vermessung der Sondenposition und -geschwindigkeit, um das Schwerefeld von Jupiter und den Eismonden zu untersuchen. Betreut vom Joint Institute for VLBI in Europe, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) und NSO, Niederlande.
SWISub-millimetre Wave InstrumentSubmillimeterwelleninstrument. Superheterodynempfänger zur Untersuchung der Temperaturstruktur, Zusammensetzung und Dynamik der Stratosphäre und Troposphäre von Jupiter und der Exosphären und Oberflächen der Eismonde. Das Instrument benutzt eine 30-cm-Antenne und arbeitet in den zwei Bereichen (1080–1275 GHz und 530–601 GHz) mit einer spektralen Auflösung von ~107. Gebaut vom Max-Planck-Institut für Sonnensystemforschung und DLR, Deutschland. Komponenten kommen von JAXA.
UVSUV Imaging SpectrographAbbildendes UV-Spektrometer, soll die Zusammensetzung und Dynamik der Exosphären der Eismonde, die Aurora auf Jupiter und die Zusammensetzung und Struktur der oberen Atmosphäre untersuchen. Das Instrument wird nadir beobachten, aber auch für Sonnen- und Sternenbedeckungen eingesetzt werden, um die durchleuchtete Atmosphäre zu untersuchen. Die Wellenlänge ist 55–210 nm mit einer spektralen Auflösung von <0,6 nm. Die räumliche Auflösung ist 0,5 km auf Ganymed und bis zu 250 km auf Jupiter. Beitrag vom Southwest Research Institute und NASA, USA.

Entwicklung und Bau

Der Grundsatzbeschluss für die Mission erfolgte im Mai 2012. Die Nutzlast wurde im Februar 2013 beschlossen. Im Juli 2015 wurde für 350 Millionen Euro der Bau an Airbus Defence & Space SAS in Frankreich als Generalunternehmen vergeben. Der Bau erfolgte zum größten Teil bei Airbus Defence and Space GmbH in Friedrichshafen. In den Jahren 2016 und 2017 wurden die Missionsziele und die Erfordernisse an das System, das vorläufige Design des Raumfahrzeugs und der Instrumente festgelegt. Ab September 2017 wurden die endgültigen Designs der Instrumente festgelegt und im Dezember wurden die Anforderungen an das Bodensegment festgelegt. Im Mai 2018 wurden die Tests mit dem Testmodell für die Entwicklung der Temperaturkontrolle fertiggestellt. Im Dezember 2018 wurden die Designs für das Bodensegment festgelegt. Im März 2019 wurde die Erfordernisse für die wissenschaftliche Missionszentrale festgelegt.

Im September 2019 begann die Integration (der Zusammenbau) des Flugmodells der Sonde. Im November 2019 wurden die Instrumente fertiggestellt. Der Abschluss der Integrationsphase wurde am 20. Mai 2022 bekannt gegeben. Das Flugmodell der Sonde war somit insgesamt fertig gebaut und ging danach zur Airbus Defence & Space in Toulouse für weitere Tests. Vom Oktober 2020 bis Januar 2023 wurden alle Teile der Sonde gründlich überprüft und getestet. Am 8. Februar 2023 landete die Sonde in einer Antonov An-124 auf dem Flughafen in Cayenne, um die letzten Funktionstests zu machen und auf der Startrakete montiert zu werden.

Flug

Der erste Starttermin am 13. April 2023, 14.15 MESZ wurde 10 Minuten vorher wegen zu hoher Windgeschwindigkeiten in großer Höhe und damit zu hohem Gewitterrisiko am Startpfad abgesagt. Die Rakete mit der Sonde hob dann dem 14. April 2023, um 12.14.29 UTC (Ortszeit 8:14 a.m. EDT, 14.14 MESZ) von der Startrampe ELA-3 des Raumfahrtzentrums Guayana ab und brachte JUICE in eine heliozentrische Umlaufbahn. JUICE ist die letzte wissenschaftliche Mission, die mit einer Ariane-5-ECA-Rakete vom Raumfahrtzentrum Guayana gestartet wurde. Die Raumsonde wog inklusive Treibstoff und Instrumenten rund 6350 Kilogramm. Ihre hyperbolische Exzessgeschwindigkeit soll 3,15 km/s betragen.

Am 26. Mai 2023 wurde gemeldet, dass mit Unterstützung der beiden Selfiekameras nach sechs Wochen alle ausfahrbaren Teile wie Solarpenele, Antennen, Arme, Sensoren und Instrumente in ihre Endpositionen eingerastet und für die Tests bereit sind. Die 16 Meter lange RIME-Antenne konnte anfänglich nicht vollständig ausgefahren werden, letztlich gelang es jedoch den blockierten Mechanismus zu befreien. Die optische Kamera JANUS lieferte die ersten Bilder. Mitte Juli 2023 sollen alle Instrumente auf korrekte Funktion getestet werden.

Die Flugdauer bis zu ihrem Ziel soll ungefähr acht Jahre dauern. JUICE soll im Laufe mehrerer Sonnenumkreisungen mehrere Swing-by-Manöver an der Erde und je ein Manöver am Mond und an der Venus durchführen, das nächste größere Manöver ist ein Fly-By an Mond und Erde im August 2024.

Jupiter soll im Juli 2031 erreicht werden. Etwa ein halbes Jahr davor soll der wissenschaftliche Betrieb beginnen. Durch eine zweistündige Zündung des Triebwerks und ein abbremsendes Swing-by an Ganymed soll die Sonde in eine Jupiterumlaufbahn einschwenken. Nach zwei Jahren und mehreren Vorbeiflügen an Europa und Kallisto soll sie im Dezember 2034 in eine Umlaufbahn um Ganymed eintreten, den sie zuerst in einer elliptischen Bahn zwischen 200 und 10.000 Kilometer Höhe umkreisen wird. Danach werden kreisförmige Umlaufbahnen von 5000, 500 und 200 Kilometer Höhe angestrebt. Insgesamt sieht die Mission mehr als 25 Gravity Assists und Flybys vor. Ende 2035 soll die Sonde dann auf Ganymed planmäßig zum Absturz gebracht werden.

Literatur

  • Christian Gritzner: Die europäische Mission JUICE. In: Sterne und Weltraum, Heft 12/2015, S. 28–37.
Commons: JUICE (Raumsonde) – Sammlung von Bildern

Einzelnachweise

  1. ESA: JUICE Definition Study Report (Red Book). Auf: sci.esa.int vom 30. September 2014 (englisch), ist nicht eindeutig bezüglich der Anzahl der Instrumente
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Juice’s journey and Jupiter system tour. In: esa.int. ESA, 29. März 2022, abgerufen am 12. April 2022 (englisch).
  3. ESA: JUICE is Europe’s next large science mission. Auf: esa.int vom 2. Mai 2012 (englisch); zuletzt abgerufen am 7. November 2015.
  4. 1 2 3 4 5 6 Juice spacecraft specs. Abgerufen am 23. Mai 2023 (englisch).
  5. Juice sends first ‘selfies’ from space. Abgerufen am 23. Mai 2023 (englisch).
  6. ESA: ESA chooses instruments for its Jupiter icy moons explore. Auf: sci.esa.int vom 21. Februar 2013, abgerufen am 22. Februar 2013.
  7. Juice’s instruments. In: esa.int. Abgerufen am 27. März 2021 (englisch).
  8. ESA Science & Technology – Science Payload. In: sci.esa.int. Abgerufen am 20. Mai 2022 (englisch).
  9. Anm. Ausklapparme für Magnetometer dienen dazu, die Messungen möglichst unbeeinflusst von den Eigenmagnetfeldern, die die Sonde trotz Abschirmung erzeugt oder beeinflusst, machen zu können. Etwa 10 m Armlänge wurden schon bei mehreren Missionen, etwa Cassini-Huygens verwendet, der einteilige Arm bei Venus Express war nur etwa 1 m lang. Quelle: Werner Magnes, IWF Graz, Telefonat, 14. April 2023.
  10. Bild des MAGSCA Flugmodells auf Wikimedia Commons. In: w.wiki. Abgerufen am 13. April 2023.
  11. MAGSCA. In: oeaw.ac.at. Österreichische Akademie der Wissenschaften, Institut für Weltraumforschung, abgerufen am 12. April 2023.
  12. First instrument delivered for Jupiter Icy Moon Explorer. In: esa.int. Abgerufen am 27. März 2021 (englisch).
  13. ESA Science & Technology – Jupiter mission contract ceremony. In: sci.esa.int. Abgerufen am 25. Februar 2022 (englisch).
  14. ESA: Preparing to build ESA’s Jupiter Mission. Auf: esa.int vom 17. Juli 2015, abgerufen am 21. Juli 2015.
  15. Juice spacecraft fully integrated and ready for next testing. In: esa.int. Abgerufen am 20. Mai 2022 (englisch).
  16. Juice on final stretch for launch to Jupiter. In: esa.int. Abgerufen am 20. Februar 2023 (englisch).
  17. Norbert Svoboda: Europas Reise zum Jupiter verblies vorerst der Wind. Kleine Zeitung, Print, 14. April 2023, S. 12.
  18. Ankunft für das Jahr 2031 geplant: ESA-Raumsonde »Juice« ist zum Jupiter gestartet. In: Spiegel Online. 14. April 2023, abgerufen am 14. April 2023.
  19. Auf zum Jupiter: Esa-Raumsonde Juice ist erfolgreich gestartet. In: mdr.de. Abgerufen am 15. April 2023.
  20. Juice deployments complete: final form for Jupiter. Abgerufen am 28. Mai 2023 (englisch).
  21. ESA Science & Technology – JUICE assessment study report (Yellow Book). In: sci.esa.int. Abgerufen am 23. August 2021 (englisch).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.