Die -Funktion ist in der Mathematik eine spezielle Funktion, die üblicherweise mit bezeichnet wird. Sie verallgemeinert die Hyperfakultät auf die komplexen Zahlen; analog der komplexen Erweiterung der Fakultätsfunktion zur Gammafunktion.

Die Hyperfakultät einer natürlichen Zahl ist definiert durch

Für die -Funktion soll nun gelten

und sie soll auf den Zahlenbereich der komplexen Zahlen erweitert werden.

Definitionen

Eine mögliche Definition der -Funktion lautet:

wobei für die komplexe Verallgemeinerung des Binomialkoeffizienten und Γ für die Gammafunktion steht.

Eine andere Möglichkeit bietet

wobei für die riemannsche Zetafunktion und für die hurwitzsche Zeta-Funktion stehen (es werden jeweils die Ableitungen gebraucht.)

Die Verwandtschaft der -Funktion zur Gammafunktion und der barnesschen -Funktion wird durch die Formel

zum Ausdruck gebracht.

Werte

Für natürliche stimmen die Werte der K-Funktion definitionsgemäß mit dem Wert der Hyperfakultätsfunktion überein. Die ersten dieser Werte sind

1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, … (Folge A002109 in OEIS).

Der Wert ist explizit gegeben durch

= 1,2451432494…

wobei für die Konstante von Glaisher-Kinkelin steht.

Weitere Zusammenhänge

Mit der barnesschen G-Funktion gilt

für alle

Benoit Cloitre zeigte 2003 folgende Formel:

.

Einzelnachweise

  1. 1 2 3 Eric W. Weisstein: Hyperfactorial. In: MathWorld (englisch).
  2. http://www.wolframalpha.com/input/?i=K-Function(1/2)

Literatur

  • Hermann Kinkelin: Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechnung, Journal für die reine und angewandte Mathematik 57, 1860, 18, S. 122–138 (online)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.