Das Lemma von Euklid ist ein grundlegendes Lemma in der klassischen Arithmetik bzw. der elementaren Zahlentheorie. Seine Aussage wird gewöhnlich zum Beweis des Fundamentalsatz der Arithmetik benutzt, genauer zur Eindeutigkeit der Primfaktorzerlegung. Es taucht schon in Euklids Elementen auf (Buch VII, Proposition 30).

Das Lemma für natürliche Zahlen

Die zeitgenössische Übersetzung der klassischen Formulierung für natürliche oder ganze Zahlen lautet:

Teilt eine Primzahl ein Produkt , so auch einen (oder beide) der Faktoren.

Äquivalent dazu ist folgende Verallgemeinerung:

Teilt das Produkt und ist teilerfremd zu einem der Faktoren, so teilt es den anderen.

Denn falls eine Primzahl ist, erhält man wieder die obere Fassung; ist zusammengesetzt, so gilt es für jeden seiner Primfaktoren und damit für selbst.

Beweis

Der Beweis des Lemmas kann klassisch als direkter Beweis geführt werden, er nutzt das Lemma von Bézout und argumentiert damit teilweise außerhalb der natürlichen Zahlen, die Aussage gilt aber offensichtlich auch eingeschränkt auf .

Seien beliebig. Angenommen, eine Primzahl teilt das Produkt , aber nicht den Faktor . Dann ist zu zeigen, dass ein Teiler von ist.

Aus der Annahme folgt insbesondere, dass und teilerfremd sind. Mit Bézout existieren dann zwei ganze Zahlen und , sodass gilt. Diese Gleichung mit multipliziert und etwas umsortiert liefert

.

Laut Annahme existiert ein mit , damit lässt sich auf der linken Seite der Gleichung ausklammern:

.

Also ist Faktor eines Produktes, das ergibt. Somit teilt es , was zu zeigen war.

Anwendungen und Verallgemeinerung

Das Lemma von Euklid kommt indirekt in nahezu jeder Argumentation mittels Teilbarkeit vor, insbesondere bei Primfaktorzerlegungen und dem euklidischen Algorithmus. Bei praktischen Rechenaufgaben spielt das Lemma selbst nur eine untergeordnete Rolle.

Das Lemma gilt auch für (kommutative) Hauptidealringe: Sei ein Hauptidealring, und irreduzibel in , dann gilt . Hierzu zeigt man die vermeintlich stärkere Aussage, dass das von einem irreduziblen Element erzeugte Hauptideal bereits ein maximales Ideal ist. In einem Hauptidealbereich fallen die Begriffe "Primideal" und "maximales Ideal" also zusammen.

Ist nämlich ein Ideal mit , so gibt es ein mit . Aus folgt also für ein geeignetes . Da irreduzibel ist, ist ein Einheit oder eine Einheit von . Also folgt oder und sind assoziiert und erzeugen dasselbe Hauptideal. Insgesamt erhält man also oder , was nach Definition bedeutet, dass maximal ist.

Einzelnachweise

  1. Euklids Elemente, Buch VII, Prop 30 (englisch Übersetzung, mit orig. Beweis)
  2. Jürgen Wolfart: Einführung in die Algebra und Zahlentheorie. Vieweg, Braunschweig/Wiesbaden 1996, ISBN 3-528-07286-5, S. 76.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.