In der Gruppentheorie, einem Teilgebiet der Mathematik, ist die Mathieu-Gruppe M22 eine einfache Gruppe mit 443520 Elementen. Sie gehörte zu den ersten fünf im 19. Jahrhundert entdeckten sporadischen Gruppen, die heute als Mathieu-Gruppen bezeichnet werden. Namensgeber ist der französische Mathematiker Émile Léonard Mathieu.

Konstruktion

Sei der Körper mit 4 Elementen und die projektive Ebene über .

Wir definieren ein System ,

  • dessen “Punkte” die Punkte aus und zusätzlich ein Punkt sind,
  • dessen “Standardblöcke” die um ergänzten Geraden aus sind,
  • dessen “Nichtstandardblöcke” die Bilder des Ovals unter der Wirkung der projektiven speziellen Gruppe sind.

Die Menge der Punkte wird mit bezeichnet, die Menge der Blöcke (standard oder nichtstandard) mit . Als Automorphismus von bezeichnet man Permutationen von , die Mengen aus auf Mengen aus abbilden. Ein gerader Automorphismus ist ein Automorphismus, der eine gerade Permutation von ist.

Die Mathieu-Gruppe ist die Gruppe der geraden Automorphismen von .

Sie wirkt 3-transitiv auf und transitiv auf .

Literatur

  • Oleg Bogopolski: Introduction to Group Theory. EMS Textbooks in Mathematics. Zürich: European Mathematical Society 2008, ISBN 978-3-03719-041-8/hbk
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.